IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00410001.html
   My bibliography  Save this paper

Coupling biophysical and micro-economic models to assess the effect of mitigation measures on greenhouse gas emissions from agriculture

Author

Listed:
  • Sophie Durandeau

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Benoit Gabrielle

    (EGC - Environnement et Grandes Cultures - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Caroline Godard

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Pierre-Alain Jayet

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Christine Le Bas

    (InfoSol - InfoSol - INRA - Institut National de la Recherche Agronomique)

Abstract

Agricultural soils are a major source of atmospheric nitrous oxide (N2O), a potent greenhouse gas (GHG). Because N2O emissions strongly depend on soil type, climate, and crop management, their inventory requires the combination of biophysical and economic modeling, to simulate farmers' behavior. Here, we coupled a biophysical soil-crop model, CERES-EGS, with an economic farm type supply model, AROPAj, at the regional scale in northern France. Response curves of N2O emissions to fertilizer nitrogen (Nf) inputs were generated with CERES-EGC, and linearized to obtain emission factors. The latter ranged from 0.001 to 0.0225 kg N2O-N kg-1 Nf, depending on soil and crop type, compared to the fixed 0.0125 value of the IPCC guidelines. The modeled emission factors were fed into the economic model AROPAj which relates farm-level GHG emissions to production factors. This resulted in a N2O efflux 20% lower than with the default IPCC method. The costs of abating GHG emissions from agriculture were calculated using a first-best tax on GHG emissions, and a second-best tax on their presumed factors (livestock size and fertilizer inputs). The first-best taxation was relatively efficient, achieving an 8\% reduction with a tax of 11 euro/t-CO2-equivalent, compared to 68 euro/t-CO2eq for the same target with the second-best scheme.

Suggested Citation

  • Sophie Durandeau & Benoit Gabrielle & Caroline Godard & Pierre-Alain Jayet & Christine Le Bas, 2010. "Coupling biophysical and micro-economic models to assess the effect of mitigation measures on greenhouse gas emissions from agriculture," Post-Print hal-00410001, HAL.
  • Handle: RePEc:hal:journl:hal-00410001
    DOI: 10.1007/s10584-009-9653-8
    Note: View the original document on HAL open archive server: https://hal.science/hal-00410001
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00410001/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10584-009-9653-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    2. Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
    3. Ben Fradj, Nosra & Jayet, Pierre Alain & Rozakis, Stelios & Georganta, Eleni & Jędrejek, Anna, 2020. "Contribution of agricultural systems to the bioeconomy in Poland: Integration of willow in the context of a stylised CAP diversification," Land Use Policy, Elsevier, vol. 99(C).
    4. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    5. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    6. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    7. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    8. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    9. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    10. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00410001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.