IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00332823.html
   My bibliography  Save this paper

Le trading algorithmique

Author

Listed:
  • Victor Lebreton

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

The algorithmic trading comes from digitalisation of the processing of trading assets on financial markets. Since 1980 the computerization of the stock market offers real time processing of financial information. This technological revolution has offered processes and mathematic methods to identify best return on transactions. Current research relates to autonomous transaction systems programmed in certain periods and some algorithms. This offers return opportunities where traders can not intervene. There are about thirty algorithms to assist the traders, the best known are the VWAP, the TWAP, TVOL. The algorithms offer the latest strategies and decision-making are the subject of much research. These advances in modeling decision-making autonomous agent can envisage a rich future for these technologies, the players already in use for more than 30% of their trading.

Suggested Citation

  • Victor Lebreton, 2007. "Le trading algorithmique," Post-Print hal-00332823, HAL.
  • Handle: RePEc:hal:journl:hal-00332823
    Note: View the original document on HAL open archive server: https://hal.science/hal-00332823v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00332823v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brailsford, Timothy J. & Frino, Alex & Hodgson, Allan & West, Andrew, 1999. "Stock market automation and the transmission of information between spot and futures markets," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 247-264, November.
    2. Bollerslev, Tim & Domowitz, Ian & Wang, Jianxin, 1997. "Order flow and the bid-ask spread: An empirical probability model of screen-based trading," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1471-1491, June.
    3. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    4. Mark Austin & Graham Bates & Michael Dempster & Vasco Leemans & Stacy Williams, 2004. "Adaptive systems for foreign exchange trading," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 37-45.
    5. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Lebreton, 2007. "Le trading algorithmique," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00332823, HAL.
    2. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    3. Anton Bovier & Jiri Cerny & Ostap Hryniv, 2004. "The Opinion Game: Stock price evolution from microscopic market modelling," Papers cond-mat/0401422, arXiv.org.
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Damien Challet & Robin Stinchcombe, 2003. "Non-constant rates and over-diffusive prices in a simple model of limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 155-162.
    6. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    7. Szabolcs Mike & J. Doyne Farmer, 2005. "An empirical behavioral model of price formation," Papers physics/0509194, arXiv.org, revised Oct 2005.
    8. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    9. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    10. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    11. Bruce Mizrach, 2008. "The next tick on Nasdaq," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 19-40.
    12. Anton Bovier & Jiří Černý & Ostap Hryniv, 2006. "The Opinion Game: Stock Price Evolution From Microscopic Market Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 91-111.
    13. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    15. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    16. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    17. Ito, Akitoshi, 1999. "Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(3-4), pages 283-330, August.
    18. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    19. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    20. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00332823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.