IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-01400186.html
   My bibliography  Save this paper

The Lila distribution and its applications in risk modelling

Author

Listed:
  • Bertrand K. Hassani

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Wei Yang

    (Risk methodology - Grupo Santander)

Abstract

Risk date sets tend to have heavy-tailed, sometimes bi-modal, empirical distributions, especially in operational risk, market risk and customers behaviour data sets. To capture these observed "unusual" features, we construct a new probability distribution and call it the lowered-inside-leveraged-aside (Lila) distribution as it transfers the embedded weight of data from the body to the tail. This newly constructed distribution can be viewed as a parametric distribution with two peaks. It is constructed through the composition of a Sigmoid-shaped continuous increasing differentiable function with cumulative distribution functions of random variables. Examples and some basic properties of the Lila distribution are illustrated. As an application, we fit a Lila distribution to a set of generated data by using the quantile distance minimisation method (alternative methodologies have been tested too, such as maximum likelihood estimation).

Suggested Citation

  • Bertrand K. Hassani & Wei Yang, 2016. "The Lila distribution and its applications in risk modelling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01400186, HAL.
  • Handle: RePEc:hal:cesptp:halshs-01400186
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01400186
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01400186/document
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01491990, HAL.
    3. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Post-Print halshs-01491990, HAL.
    4. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Impact of multimodality of distributions on VaR and ES calculations," Documents de travail du Centre d'Economie de la Sorbonne 17019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Keywords

    probability distribution; parametric distribution; multimodal distribution; operational risk; market risk; pseudo bi-modal distribution;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-01400186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.