IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00586037.html
   My bibliography  Save this paper

Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides

Author

Listed:
  • Dinah Rosenberg

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Bernard de Meyer

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Ehud Lehrer

    (TAU - School of Mathematical Sciences [Tel Aviv] - TAU - Raymond and Beverly Sackler Faculty of Exact Sciences [Tel Aviv] - TAU - Tel Aviv University)

Abstract

We study zero-sum games with incomplete information and analyze the impact that the information players receive has on the payoffs. It turns out that the functions that measure the value of information share two properties. The first is Blackwell monotonicity, which means that each player gains from knowing more. The second is concavity on the space of conditional probabilities. We prove that any function satisfying these two properties is the value function of a zero-sum game.

Suggested Citation

  • Dinah Rosenberg & Bernard de Meyer & Ehud Lehrer, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00586037, HAL.
  • Handle: RePEc:hal:cesptp:hal-00586037
    DOI: 10.1287/moor.1100.0467
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Kalai & Ehud Kalai, 2011. "Cooperation in Strategic Games Revisited," Discussion Papers 1512, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Fabien Gensbittel, 2015. "Extensions of the Cav( u ) Theorem for Repeated Games with Incomplete Information on One Side," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 80-104, February.
    3. Mark Whitmeyer, 2020. "In Simple Communication Games, When Does Ex Ante Fact-Finding Benefit the Receiver?," Papers 2001.09387, arXiv.org.
    4. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    5. Fabien Gensbittel & Marcin Peski & Jérôme Renault, 2019. "The Large Space Of Information Structures," Working Papers hal-02075905, HAL.
    6. De Meyer, Bernard, 2010. "Price dynamics on a stock market with asymmetric information," Games and Economic Behavior, Elsevier, vol. 69(1), pages 42-71, May.

    More about this item

    Keywords

    value-of-information function; zero-sum game; game with incomplete information; Blackwell monotonicity;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00586037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.