IDEAS home Printed from https://ideas.repec.org/p/gro/rugsom/02a67.html
   My bibliography  Save this paper

The shift team formation problem in multi-shift manufacturing operations

Author

Listed:
  • Slomp, Jannes
  • Suresh, Nallan C.

    (Groningen University)

Abstract

This paper addresses the problem of assigning operators to teams that work in single-, two-, or three-day shift systems. The problem was motivated by, and illustrated with a case situation encountered in Dutch manufacturing industry. The problem addressed forms an extension of cell formation problems which are currently in the phase of addressing labor-related issues in cell design. A generalized goal problem formulation is presented to address multiple, conflicting objectives covering cross-training of workers, ensuring adequate levels of labor flexibility and minimizing labor-related costs. The proposed solution procedure consists of two phases. In the first phase, shift systems, in which applicable machines and the sizes of each shift team are identified. The next phase deals with assignment of operators to various teams and identification of specific cross-training needs for various workers. This phase involves the use of interactive goal programming. The methodology is illustrated by details from the case situation as well as a numerical example.

Suggested Citation

  • Slomp, Jannes & Suresh, Nallan C., 2002. "The shift team formation problem in multi-shift manufacturing operations," Research Report 02A67, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  • Handle: RePEc:gro:rugsom:02a67
    as

    Download full text from publisher

    File URL: http://irs.ub.rug.nl/ppn/243986963
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nijkamp, P. & Spronk, J., 1978. "Interactive multiple goal programming," Serie Research Memoranda 0003, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Leslie C. Edie, 1954. "Traffic Delays at Toll Booths," Operations Research, INFORMS, vol. 2(2), pages 107-138, May.
    3. Molleman, Eric & Slomp, Jannes & Rolefes, Samantha, 2002. "The evolution of a cellular manufacturing system - a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 75(3), pages 305-322, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dgr:rugsom:02a67 is not listed on IDEAS
    2. Slomp, Jannes & Suresh, Nallan C., 2005. "The shift team formation problem in multi-shift manufacturing operations," European Journal of Operational Research, Elsevier, vol. 165(3), pages 708-728, September.
    3. Partha Chakroborty & Rahul Gill & Pranamesh Chakraborty, 2016. "Analysing queueing at toll plazas using a coupled, multiple-queue, queueing system model: application to toll plaza design," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(7), pages 675-692, October.
    4. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    5. Mirko Kremer & Francis de Véricourt, 2022. "Mismanaging diagnostic accuracy under congestion," ESMT Research Working Papers ESMT-22-01, ESMT European School of Management and Technology.
    6. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    7. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    8. Castillo, Ignacio & Joro, Tarja & Li, Yong Yue, 2009. "Workforce scheduling with multiple objectives," European Journal of Operational Research, Elsevier, vol. 196(1), pages 162-170, July.
    9. P Nijkamp & J Spronk, 1983. "Integrated Policy Analysis by Means of Interactive Learning Models," Environment and Planning A, , vol. 15(9), pages 1195-1204, September.
    10. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    11. Zopounidis, C., 1999. "Multicriteria decision aid in financial management," European Journal of Operational Research, Elsevier, vol. 119(2), pages 404-415, December.
    12. Hafkamp, Wim & Nijkamp, Peter, 1986. "Integrated economic-environmental-energy policy and conflict analysis," Journal of Policy Modeling, Elsevier, vol. 8(4), pages 551-576.
    13. Rana Shariat & Kai Huang, 2024. "A large-scale neighborhood search algorithm for multi-activity tour scheduling problems," Journal of Heuristics, Springer, vol. 30(5), pages 225-267, December.
    14. Luss, Hanan & Rosenwein, Moshe B., 1997. "Operations Research applications: Opportunities and accomplishments," European Journal of Operational Research, Elsevier, vol. 97(2), pages 220-244, March.
    15. Gary M. Thompson, 1997. "Labor staffing and scheduling models for controlling service levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(8), pages 719-740, December.
    16. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    17. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    18. Yang, Miin-Shen & Hung, Wen-Liang & Cheng, Fu-Chou, 2006. "Mixed-variable fuzzy clustering approach to part family and machine cell formation for GT applications," International Journal of Production Economics, Elsevier, vol. 103(1), pages 185-198, September.
    19. Restrepo, María I. & Lozano, Leonardo & Medaglia, Andrés L., 2012. "Constrained network-based column generation for the multi-activity shift scheduling problem," International Journal of Production Economics, Elsevier, vol. 140(1), pages 466-472.
    20. Rui Zhou & Daniel P. Palomar, 2020. "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," Papers 2008.00863, arXiv.org.
    21. P Nijkamp, 1983. "Information Systems for Regional Development Planning: A State-of-the-Art Survey," Environment and Planning B, , vol. 10(3), pages 283-302, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gro:rugsom:02a67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hanneke Tamling (email available below). General contact details of provider: https://edirc.repec.org/data/ferugnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.