IDEAS home Printed from https://ideas.repec.org/p/gii/giihei/heidwp07-2020.html
   My bibliography  Save this paper

Forecasting inflation in Bosnia and Herzegovina

Author

Listed:
  • Elma Hasanovic

    (Central Bank of Bosnia and Herzegovina)

Abstract

The purpose of this paper is to evaluate the performance of some leading univariate and multivariate models: ARIMA, the standard OLS VAR and Bayesian VAR models, in forecasting inflation in Bosnia and Herzegovina. Although the presented models are small and highly aggregated, they provide a convenient framework to illustrate practical forecast issues. Furthermore, they are a good starting point in the process of the forecast development. The empirical part of this paper estimates the domestic and international transmission effects on inflation and tries to find good predictors of the inflation. A variety of inflation indicators included in the VAR models are assessed as potential predictors of inflation. They have been suggested by economic theory and existing research. A pseudo out-of-sample forecast approach is employed to assess the models’ performance at different horizons using a recursive strategy. The study then evaluates the relative forecast performance of univariate model and various alternative specifications of the VAR models and offers conclusions. The results confirm the significant improvement in forecasting performance at all forecast horizons when Bayesian techniques, which incorporate information from the likelihood function and some informative prior distributions, are used.

Suggested Citation

  • Elma Hasanovic, 2020. "Forecasting inflation in Bosnia and Herzegovina," IHEID Working Papers 07-2020, Economics Section, The Graduate Institute of International Studies.
  • Handle: RePEc:gii:giihei:heidwp07-2020
    as

    Download full text from publisher

    File URL: http://repec.graduateinstitute.ch/pdfs/Working_papers/HEIDWP07-2020.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Bayesian VAR; model selection; inflation forecasting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gii:giihei:heidwp07-2020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dorina Dobre (email available below). General contact details of provider: https://edirc.repec.org/data/ieheich.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.