IDEAS home Printed from https://ideas.repec.org/p/fth/sotoam/00-156.html
   My bibliography  Save this paper

Black-Scholes Versus Neural Networks in Pricing FTSE 100 Options

Author

Listed:
  • Bennell, J.
  • Sutcliffe, C.

Abstract

This paper compares the performance of Black-Scholes with an artificial neural network (ANN) in pricing European style call options on the FTSE 100 index. It is the first to study the performance of ANNs in pricing UK options, and the first to allow for dividends in the closed-form model and the ANN.

Suggested Citation

  • Bennell, J. & Sutcliffe, C., 2000. "Black-Scholes Versus Neural Networks in Pricing FTSE 100 Options," Papers 00-156, University of Southampton - Department of Accounting and Management Science.
  • Handle: RePEc:fth:sotoam:00-156
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    3. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    4. Marcos Vizcaíno-González & Juan Pineiro-Chousa & Jorge Sáinz-González, 2017. "Selecting explanatory factors of voting decisions by means of fsQCA and ANN," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2049-2061, September.
    5. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    6. Andreas Karathanasopoulos, 2016. "Modelling and trading the English stock market with novelty optimization techniques," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 50-57.
    7. Healy, J.V. & Dixon, M. & Read, B.J. & Cai, F.F., 2004. "Confidence limits for data mining models of options prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 162-167.
    8. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.

    More about this item

    Keywords

    PERFORMANCE ; DIVIDENDS ; INDEXES;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:sotoam:00-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/desotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.