IDEAS home Printed from https://ideas.repec.org/p/fth/ehecge/99.13.html
   My bibliography  Save this paper

Capacity Planning under Uncertain Demand in Telecommunication Networks

Author

Listed:
  • Lisser, A.
  • Ouorou, A.
  • Vial, J.-P.
  • Gondzio, J.

Abstract

This paper deals with the sizing of telecommunications networks offering private line service to a few clients. The clients ask for some transfer capacity between some pair of nodes, but their demand is uncertain. In case of high demand and insufficient capacity, some clients may be denied the transfer; the telecommunications company pays a penalty cost for that.

Suggested Citation

  • Lisser, A. & Ouorou, A. & Vial, J.-P. & Gondzio, J., 1999. "Capacity Planning under Uncertain Demand in Telecommunication Networks," Papers 99.13, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
  • Handle: RePEc:fth:ehecge:99.13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terblanche, S.E. & Wessäly, R. & Hattingh, J.M., 2011. "Survivable network design with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 210(1), pages 10-26, April.
    2. Adam Ouorou, 2006. "Robust Capacity Assignment in Telecommunications," Computational Management Science, Springer, vol. 3(4), pages 285-305, September.
    3. Jose Blanchet & Juan Li & Marvin K. Nakayama, 2019. "Rare-Event Simulation for Distribution Networks," Operations Research, INFORMS, vol. 67(5), pages 1383-1396, September.
    4. Olinick, Eli V. & Rosenberger, Jay M., 2008. "Optimizing revenue in CDMA networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 186(2), pages 812-825, April.
    5. Daniel Bienstock & Olga Raskina & Iraj Saniee & Qiong Wang, 2006. "Combined Network Design and Multiperiod Pricing: Modeling, Solution Techniques, and Computation," Operations Research, INFORMS, vol. 54(2), pages 261-276, April.

    More about this item

    Keywords

    TELECOMMUNICATIONS ; NETWORK ANALYSIS ; DEMAND;
    All these keywords.

    JEL classification:

    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:ehecge:99.13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/depgech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.