IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2021_04.html
   My bibliography  Save this paper

Incentives in regulatory DEA models with discretionary outputs: The case of Danish water regulation

Author

Listed:
  • Emil Heesche

    (Danish Competition and Consumer Authority
    Department of Food and Resource Economics, University of Copenhagen)

  • Peter Bogetoft

    (Department of Economics, Copenhagen Business School)

Abstract

Data Envelopment Analysis (DEA) based cost norms have attractive properties in the regulation of natural monopolies. However, they are also sensitive to the choice of cost drivers. When some of the cost drivers are discretionary, this may lead to suboptimal incentives. When a regulated firm compares the marginal change in its cost norm with its marginal cost of changing the discretionary output, the gains from adjusting the output will be very context specific. It is therefore unlikely that the regulation will induce socially optimal output levels. In this paper, we analytically and numerically examine the impacts of including a discretionary quality indicator in the benchmarking model used to regulate Danish water firms. We show that the eight-year catch-up period allowed in this regulation gives strong incentives to reduce costs since the firms can keep possible cost reductions for several years before the cost norm fully internalizes the cost reduction potentials. On the other hand, this scheme also provides very weak quality incentives since it takes eight years before the extra cost of increasing quality is fully internalized in the cost norm.

Suggested Citation

  • Emil Heesche & Peter Bogetoft, 2021. "Incentives in regulatory DEA models with discretionary outputs: The case of Danish water regulation," IFRO Working Paper 2021/04, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2021_04
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2021/IFRO_WP_2021_04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    2. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    3. Emili Grifell-Tatjé & C.A. Knox Lovell & Robin Sickles & Laurens Cherchye & Bram de Rock & Antonio Estache & Marijn Verschelde, 2018. "The Oxford Handbook of Productivity Analysis," Post-Print hal-02573812, HAL.
    4. Bogetoft, Peter, 1995. "Incentives and productivity measurements," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 67-77, April.
    5. PER AGRELL & Peter Bogetoft & Jørgen Tind, 2005. "DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution," Journal of Productivity Analysis, Springer, vol. 23(2), pages 173-201, May.
    6. Peter Bogetoft, 2000. "DEA and Activity Planning under Asymmetric Information," Journal of Productivity Analysis, Springer, vol. 13(1), pages 7-48, January.
    7. Peter Bogetoft, 1997. "DEA-based yardstick competition: The optimality of best practice regulation," Annals of Operations Research, Springer, vol. 73(0), pages 277-298, October.
    8. Peter Bogetoft, 1994. "Incentive Efficient Production Frontiers: An Agency Perspective on DEA," Management Science, INFORMS, vol. 40(8), pages 959-968, August.
    9. Emil Heesche & Mette Asmild, 2020. "Incorporating quality in economic regulatory benchmarking," IFRO Working Paper 2020/13, University of Copenhagen, Department of Food and Resource Economics.
    10. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    11. Agrell, Per J. & Bogetoft, Peter, 2017. "Regulatory Benchmarking: Models, Analyses and Applications," Data Envelopment Analysis Journal, now publishers, vol. 3(1-2), pages 49-91, November.
    12. Rick Antle & Peter Bogetoft, 2019. "Mix Stickiness Under Asymmetric Cost Information," Management Science, INFORMS, vol. 67(6), pages 2787-2812, June.
    13. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    14. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    15. Agrell, Per J. & Bogetoft, Peter & Tind, Jorgen, 2002. "Incentive plans for productive efficiency, innovation and learning," International Journal of Production Economics, Elsevier, vol. 78(1), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    2. Emil Heesche & Mette Asmild, 2022. "Implications of Aggregation Uncertainty in DEA," IFRO Working Paper 2022/02, University of Copenhagen, Department of Food and Resource Economics.
    3. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    2. An, Qingxian & Tao, Xiangyang & Xiong, Beibei, 2021. "Benchmarking with data envelopment analysis: An agency perspective," Omega, Elsevier, vol. 101(C).
    3. AGRELL, Per & BOGETOFT, Peter, 2013. "Benchmarking and regulation," LIDAM Discussion Papers CORE 2013008, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.
    5. Bogetoft, Peter & Nielsen, Kurt, 2008. "DEA based auctions," European Journal of Operational Research, Elsevier, vol. 184(2), pages 685-700, January.
    6. Bogetoft, Peter & Eskesen, Anita, 2022. "Balancing information rents and service differentiation in utility regulation," Energy Economics, Elsevier, vol. 106(C).
    7. Bogetoft, Peter & Fare, Rolf & Obel, Borge, 2006. "Allocative efficiency of technically inefficient production units," European Journal of Operational Research, Elsevier, vol. 168(2), pages 450-462, January.
    8. Agrell, Per J. & Niknazar, Pooria, 2014. "Structural and behavioral robustness in applied best-practice regulation," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 89-103.
    9. Bogetoft, Peter & Nielsen, Kurt, 2003. "Yardstick Based Procurement Design In Natural Resource Management," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25910, International Association of Agricultural Economists.
    10. Kerstens, Kristiaan & Sadeghi, Jafar & Toloo, Mehdi & Van de Woestyne, Ignace, 2022. "Procedures for ranking technical and cost efficient units: With a focus on nonconvexity," European Journal of Operational Research, Elsevier, vol. 300(1), pages 269-281.
    11. Peter Bogetoft & Dexiang Wang, 2005. "Estimating the Potential Gains from Mergers," Journal of Productivity Analysis, Springer, vol. 23(2), pages 145-171, May.
    12. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2017. "A DEA-based incentives system for centrally managed multi-unit organisations," European Journal of Operational Research, Elsevier, vol. 259(2), pages 587-598.
    13. Peter Bogetoft & Jens Hougaard, 2003. "Rational Inefficiencies," Journal of Productivity Analysis, Springer, vol. 20(3), pages 243-271, November.
    14. Agrell, Per J. & Bogetoft, Peter & Tind, Jorgen, 2002. "Incentive plans for productive efficiency, innovation and learning," International Journal of Production Economics, Elsevier, vol. 78(1), pages 1-11, July.
    15. Emil Heesche & Mette Asmild, 2020. "Incorporating quality in economic regulatory benchmarking," IFRO Working Paper 2020/13, University of Copenhagen, Department of Food and Resource Economics.
    16. Bogetoft, Peter & Leth Hougaard, Jens, 2004. "Super efficiency evaluations based on potential slack," European Journal of Operational Research, Elsevier, vol. 152(1), pages 14-21, January.
    17. Varmaz, Armin & Varwig, Andreas & Poddig, Thorsten, 2013. "Centralized resource planning and Yardstick competition," Omega, Elsevier, vol. 41(1), pages 112-118.
    18. Heesche, Emil & Asmild, Mette, 2022. "Incorporating quality in economic regulatory benchmarking," Omega, Elsevier, vol. 110(C).
    19. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    20. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.

    More about this item

    Keywords

    Data Envelopment Analysis; incentives; regulation; discretionary outputs; water sector;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2021_04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.