IDEAS home Printed from https://ideas.repec.org/p/foi/msapwp/03_2011.html
   My bibliography  Save this paper

Does the distribution of efficiency scores depend on the input mix?

Author

Listed:
  • Mette Asmild

    (Warwick Business School, University of Warwick)

  • Jens Leth Hougaard

    (Institute of Food and Resource Economics, University of Copenhagen)

  • Dorte Kronborg

    (Department of Finance, Copenhagen Business School)

Abstract

In this paper we examine the possibility of using the standard Kruskal-Wallis rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix. Recently, a general data generating process (DGP) suiting the DEA methodology has been formulated and some asymptotic properties of the DEA estimators have been established. In line with this generally accepted DGP, we formulate a conditional test for the assumption of mix independence. Since the DEA frontier is estimated, many standardl assumptions for evaluating the test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, as shown here, is applicable for models with multiple inputs and one output with constant returns to scale when comparing distributions of efficiency scores in two or more groups. The approach is illustrated in an empirical case of demolition projects where we reject the assumption of mix independence. This means that it is not meaningful to perform a complete ranking of the projects based on their efficiency score. Thus the example illustrates how common practice can be inappropriate.

Suggested Citation

  • Mette Asmild & Jens Leth Hougaard & Dorte Kronborg, 2011. "Does the distribution of efficiency scores depend on the input mix?," MSAP Working Paper Series 03_2011, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:msapwp:03_2011
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/MSAPpdf/MSAP2011/MSAP_WP03_2011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    4. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    7. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mette Asmild & Jens Hougaard & Dorte Kronborg, 2013. "Do efficiency scores depend on input mix? A statistical test and empirical illustration," Annals of Operations Research, Springer, vol. 211(1), pages 37-48, December.
    2. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    3. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    4. Kelly D.T.Trinh & Valentin Zelenyuk, 2015. "Bootstrap-based testing for network DEA: Some Theory and Applications," CEPA Working Papers Series WP052015, School of Economics, University of Queensland, Australia.
    5. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    6. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    7. Essid, Hédi & Ouellette, Pierre & Vigeant, Stéphane, 2010. "Measuring efficiency of Tunisian schools in the presence of quasi-fixed inputs: A bootstrap data envelopment analysis approach," Economics of Education Review, Elsevier, vol. 29(4), pages 589-596, August.
    8. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    9. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    10. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    11. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    12. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    13. Jakub Growiec & Anna Pajor & Dorota Gorniak & Artur Predki, 2015. "The shape of aggregate production functions: evidence from estimates of the World Technology Frontier," Bank i Kredyt, Narodowy Bank Polski, vol. 46(4), pages 299-326.
    14. Isabel Narbón-Perpiñá & Maria Balaguer-Coll & Emili Tortosa-Ausina, 2019. "Evaluating local government performance in times of crisis," Local Government Studies, Taylor & Francis Journals, vol. 45(1), pages 64-100, January.
    15. Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.
    16. Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
    17. Hosseinzadeh, Ahmad & Smyth, Russell & Valadkhani, Abbas & Le, Viet, 2016. "Analyzing the efficiency performance of major Australian mining companies using bootstrap data envelopment analysis," Economic Modelling, Elsevier, vol. 57(C), pages 26-35.
    18. Matthews, Kent & Xiao, Zhiguo, 2020. "Rational cost inefficiency and convergence in Chinese banks," Economic Modelling, Elsevier, vol. 91(C), pages 696-704.
    19. Simar, Leopold & Wilson, Paul W., 2002. "Non-parametric tests of returns to scale," European Journal of Operational Research, Elsevier, vol. 139(1), pages 115-132, May.
    20. Tomas Baležentis & Irena Kriščiukaitienė & Alvydas Baležentis, 2014. "A nonparametric analysis of the determinants of family farm efficiency dynamics in Lithuania," Agricultural Economics, International Association of Agricultural Economists, vol. 45(5), pages 589-599, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:msapwp:03_2011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/msakudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.