IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2023-67.html
   My bibliography  Save this paper

Measuring Interest Rate Risk Management by Financial Institutions

Author

Abstract

Financial intermediaries manage myriad interest rate risk exposures. We propose a new method to measure financial intermediaries' residual interest rate risk using high-frequency financial market data. Our method exploits all available high-frequency information and is valid under extremely weak assumptions. Applying the method to U.S. life insurers, we find their interest rate risk management strategies are generally effective. However, life insurers are more sensitive to changes in long-term interest rates than property and casualty insurers. We show that the term premium helps to explain the difference in sensitivities between the two types of insurer.

Suggested Citation

  • Celso Brunetti & Nathan Foley-Fisher & Stéphane Verani, 2023. "Measuring Interest Rate Risk Management by Financial Institutions," Finance and Economics Discussion Series 2023-067, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2023-67
    DOI: 10.17016/FEDS.2023.067
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2023067pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2023.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    2. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    3. Froot, Kenneth A. & Stein, Jeremy C., 1998. "Risk management, capital budgeting, and capital structure policy for financial institutions: an integrated approach," Journal of Financial Economics, Elsevier, vol. 47(1), pages 55-82, January.
    4. Elijah Brewer & Thomas H. Mondschean & Philip E. Strahan, 1993. "Why the life insurance industry did not face an \\"S&L-type\\" crisis," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Sep), pages 12-24.
    5. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    2. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    3. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    5. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    6. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    7. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    8. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
    10. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    11. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    12. Benjamin Yibin Zhang & Hao Zhou & Haibin Zhu, 2009. "Explaining Credit Default Swap Spreads with the Equity Volatility and Jump Risks of Individual Firms," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5099-5131, December.
    13. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    14. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    15. Daisuke Nagakura & Toshiaki Watanabe, 2015. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 45-82.
    16. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    17. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    18. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
    19. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    21. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.

    More about this item

    Keywords

    Financial institutions; Interest rate risk management; High-frequency financial econometrics; Subsampling; Life insurers;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2023-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.