IDEAS home Printed from https://ideas.repec.org/p/feb/natura/00791.html
   My bibliography  Save this paper

Toward an Understanding of the Economics of Prosumers: Evidence from a Natural Field Experiment in Energy

Author

Listed:
  • John List
  • Ioannis Pragidis
  • Michael Price

Abstract

Prosumers are becoming increasingly important in global energy consumption and production. We partner with an energy service provider in Sweden to explore the economics facing such agents by conducting a natural field experiment over a 32-month period. As a policy instrument, we explore how simple nudges affect choices on both the consumption and production sides. Importantly, with the added flexibility to influence both sides of the market, and with a rich data set that permits an analysis of intraday, intraweek, and seasonal variation, we can detail effects on overall conservation efforts, intertemporal substitution, load shifting, and net purchases from the grid. The overarching theme is that nudges have the potential to have an even greater impact on the energy market with prosumers compared to their portmanteau components.

Suggested Citation

  • John List & Ioannis Pragidis & Michael Price, 2024. "Toward an Understanding of the Economics of Prosumers: Evidence from a Natural Field Experiment in Energy," Natural Field Experiments 00791, The Field Experiments Website.
  • Handle: RePEc:feb:natura:00791
    as

    Download full text from publisher

    File URL: http://s3.amazonaws.com/fieldexperiments-papers2/papers/00791.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Chaisemartin, Clément & D’Haultfœuille, Xavier, 2023. "Two-way fixed effects and differences-in-differences estimators with several treatments," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Jon M. Jachimowicz & Oliver P. Hauser & Julia D. O’Brien & Erin Sherman & Adam D. Galinsky, 2018. "The critical role of second-order normative beliefs in predicting energy conservation," Nature Human Behaviour, Nature, vol. 2(10), pages 757-764, October.
    3. Dastrup, Samuel R. & Graff Zivin, Joshua & Costa, Dora L. & Kahn, Matthew E., 2012. "Understanding the Solar Home price premium: Electricity generation and “Green” social status," European Economic Review, Elsevier, vol. 56(5), pages 961-973.
    4. Joachim Schleich & Johannes Schuler & Matthias Pfaff & Regine Frank, 2023. "Do green electricity tariffs increase household electricity consumption?," Applied Economics, Taylor & Francis Journals, vol. 55(20), pages 2337-2348, April.
    5. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    6. Ulf J. J. Hahnel & Gilles Chatelain & Beatrice Conte & Valentino Piana & Tobias Brosch, 2020. "Mental accounting mechanisms in energy decision-making and behaviour," Nature Energy, Nature, vol. 5(12), pages 952-958, December.
    7. Dütschke, Elisabeth & Frondel, Manuel & Schleich, Joachim & Vance, Colin, 2018. "Moral licensing: Another source of rebound?," Ruhr Economic Papers 747, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    9. Matthew Harding & Steven Sexton, 2017. "Household Response to Time-Varying Electricity Prices," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 337-359, October.
    10. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    11. Brännlund, Runar & Vesterberg, Mattias, 2021. "Peak and off-peak demand for electricity: Is there a potential for load shifting?," Energy Economics, Elsevier, vol. 102(C).
    12. Matthew Harding & Steven Sexton, 2017. "Household Response to Time-Varying Electricity Prices," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 337-359, October.
    13. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Amin Karimu, Chandra Kiran B.Krishnamurthy, and Mattias Vesterberg, 2022. "Understanding Hourly Electricity Demand: Implications for Load, Welfare and Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. John A. List, 2024. "Optimally generate policy-based evidence before scaling," Nature, Nature, vol. 626(7999), pages 491-499, February.
    16. Dorner, Zack, 2019. "A behavioral rebound effect," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    17. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Filippos Exadaktylos & Jeroen Bergh, 2021. "Energy-related behaviour and rebound when rationality, self-interest and willpower are limited," Nature Energy, Nature, vol. 6(12), pages 1104-1113, December.
    19. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    20. Ben Hoen & Ryan Wiser & Mark Thayer & Peter Cappers, 2013. "Residential Photovoltaic Energy Systems In California: The Effect On Home Sales Prices," Contemporary Economic Policy, Western Economic Association International, vol. 31(4), pages 708-718, October.
    21. Ruokamo, Enni & Meriläinen, Teemu & Karhinen, Santtu & Räihä, Jouni & Suur-Uski, Päivi & Timonen, Leila & Svento, Rauli, 2022. "The effect of information nudges on energy saving: Observations from a randomized field experiment in Finland," Energy Policy, Elsevier, vol. 161(C).
    22. Andrea La Nauze, 2019. "Power from the People: Rooftop Solar and a Downward-Sloping Supply of Electricity," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1135-1168.
    23. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    24. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    25. Santarius, Tilman & Soland, Martin, 2018. "How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects," Ecological Economics, Elsevier, vol. 146(C), pages 414-424.
    26. Kimberly S. Wolske & Kenneth T. Gillingham & P. Wesley Schultz, 2020. "Peer influence on household energy behaviours," Nature Energy, Nature, vol. 5(3), pages 202-212, March.
    27. Jacopo Bonan & Cristina Cattaneo & Giovanna d’Adda & Massimo Tavoni, 2020. "The interaction of descriptive and injunctive social norms in promoting energy conservation," Nature Energy, Nature, vol. 5(11), pages 900-909, November.
    28. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    29. Qiu, Yueming & Wang, Yi David & Wang, Jianfeng, 2017. "Soak up the sun: Impact of solar energy systems on residential home values in Arizona," Energy Economics, Elsevier, vol. 66(C), pages 328-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    2. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    3. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    4. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2021. "Photovoltaics and the Solar Rebound: Evidence for Germany," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242356, Verein für Socialpolitik / German Economic Association.
    5. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    6. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    7. Kapeller, Rudolf & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2023. "Incentivizing residential electricity consumers to increase demand during periods of high local solar generation," Energy Economics, Elsevier, vol. 127(PA).
    8. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    9. Garnache, Cloé & Hernaes, Øystein & Imenes, Anders Gravir, 2022. "Which Households Respond to Electricity Peak Pricing amid High Levels of Electrification?," IZA Discussion Papers 15194, Institute of Labor Economics (IZA).
    10. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    11. Lee, Brian & Chang, Hung-Hao & Wang, Szu-Yung, 2021. "Solar power promotion plans, energy market liberalization, and farmland prices – Empirical evidence from Taiwan," Energy Economics, Elsevier, vol. 99(C).
    12. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    13. Fridgen, Gilbert & Halbrügge, Stephanie & Olenberger, Christian & Weibelzahl, Martin, 2020. "The insurance effect of renewable distributed energy resources against uncertain electricity price developments," Energy Economics, Elsevier, vol. 91(C).
    14. Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
    15. Abajian, Alexander & Pretnar, Nick, 2023. "Subsidies for Close Substitutes: Evidence from Residential Solar Systems," MPRA Paper 118171, University Library of Munich, Germany.
    16. Paolo Bragolusi & Chiara D’Alpaos, 2021. "The Willingness to Pay for Residential PV Plants in Italy: A Discrete Choice Experiment," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    17. Gosnell, Greer & McCoy, Daire, 2023. "Market failures and willingness to accept smart meters: Experimental evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    18. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    20. Simon Mathex & Lisette Ibanez & Raphaële Préget, 2023. "Distinguishing economic and moral compensation in the rebound effect: A theoretical and experimental approach," Post-Print hal-04217073, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:feb:natura:00791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesca Pagnotta (email available below). General contact details of provider: http://www.fieldexperiments.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.