IDEAS home Printed from https://ideas.repec.org/p/fca/wpfnca/2001-21.html
   My bibliography  Save this paper

The Implications of Parameter Uncertainty for Medium-Term Fiscal Planning

Author

Listed:
  • Douglas Hostland
  • David Dupuis

Abstract

Most existing studies on medium-term fiscal planning focus on a single source of uncertainty, which is captured by including additive random error terms in stochastic simulation models. The fiscal authority in these models plans its budget with complete knowledge of the structure of the economy, including the parameters. Abstracting from parameter uncertainty greatly simplifies stochastic simulation experiments, but could lead to misleading policy conclusions for reasons given by Brainard (1967). This paper investigates how parameter uncertainty influences the results obtained from stochastic simulation studies on medium-term fiscal planning. We compare simulation results obtained from two kinds of stochastic simulation experiments. In the conventional stochastic simulation framework, the fiscal authority faces uncertainty from a single source - additive error terms. In the other stochastic simulation framework, the fiscal authority also involves uncertainty about the parameters of the model. Our results indicate that parameter uncertainty leads to larger forecast errors and thereby makes fiscal planning more difficult. However, we find that one can obtain much the same results by increasing the magnitude of the additive shocks in the model. This implies that the non-linear (multiplicative as opposed to additive) nature of the stochastic parameters plays a relatively minor role in our analysis of fiscal planning. The additive error terms in the stochastic simulation model can therefore be interpreted to capture parameter uncertainty, as well as other sources of uncertainty. La plupart des études qui ont été menées sur la planification financière à moyen terme développent une seule source d’incertitude, qui est définie par l’intégration de termes d’erreur aléatoire additif dans des modèles de simulation stochastique. Dans ces modèles, le responsable de la planification financière qui travaille à établir le budget connaît à fond la structure de l’économie, notamment les paramètres. Or, si l’on simplifie grandement les expériences en simulation stochastique en faisant abstraction du paramètre incertitude, les conclusions dont on pourrait retirer de ces expériences et qui serviraient de fondements à l’élaboration des directives risquent de s’avérer trompeuses, pour les raisons décrites par Brainard (1967). La présente étude examine les effets du paramètre incertitude sur les résultats obtenus lors d’études de simulation stochastique ayant pour cadre la planification financière à moyen terme. Les auteurs comparent les résultats concernant la simulation que donnent de deux différents genres d’expériences de simulation stochastique. En employant la simulation stochastique conventionnelle, le responsable de la planification financière est aux prises avec une incertitude découlant d’une seule source, soit les termes d’erreur additive, tandis que la seconde simulation stochastique comporte en plus l’incertitude à l’égard des paramètres du modèle. Selon les conclusions de l’étude, le paramètre incertitude produit des erreurs plus grandes en matière de prévisions, ce qui complique la planification financière. Toutefois, il est possible d’arriver à des résultats assez similaires en augmentant la valeur absolue des erreurs additives sur les équations dans le modèle. Par conséquent, la nature non linéaire (multiplicative, contrairement à additive) des paramètres stochastiques joue un rôle relativement mineur dans la présente analyse sur la planification financière. Il est ainsi possible d’interpréter les termes d’erreur additive dans le modèle de simulation stochastique pour définir le paramètre incertitude de même que d’autres sources d’incertitude.

Suggested Citation

  • Douglas Hostland & David Dupuis, "undated". "The Implications of Parameter Uncertainty for Medium-Term Fiscal Planning," Working Papers-Department of Finance Canada 2001-21, Department of Finance Canada.
  • Handle: RePEc:fca:wpfnca:2001-21
    as

    Download full text from publisher

    File URL: http://www.fin.gc.ca/scripts/Publication_Request/request2_e.asp?doc=wp2001-21e.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabell Koske & Nigel Pain, 2008. "The Usefulness of Output Gaps for Policy Analysis," OECD Economics Department Working Papers 621, OECD Publishing.
    2. Giovanni Di Bartolomeo & Francesco Giuli & Marco Manzo, 2009. "Policy uncertainty, symbiosis, and the optimal fiscal and monetary conservativeness," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 36(4), pages 461-474, November.
    3. Z. Nikooeinejad & M. Heydari & M. Saffarzadeh & G. B. Loghmani & J. Engwerda, 2022. "Numerical Simulation of Non-cooperative and Cooperative Equilibrium Solutions for a Stochastic Government Debt Stabilization Game," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 775-801, February.
    4. Jacob Engwerda & Davoud Mahmoudinia & Rahim Dalali Isfahani, 2016. "Government and Central Bank Interaction under Uncertainty: A Differential Games Approach," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 20(2), pages 225-259, Spring.
    5. Giovanni Di Bartolomeo & Marco Manzo, 2010. "Fiscal Policy Under Balanced Budget And Indeterminacy: A New Keynesian Perspective," Scottish Journal of Political Economy, Scottish Economic Society, vol. 57(4), pages 455-472, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fca:wpfnca:2001-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gustavo Durango (email available below). General contact details of provider: https://edirc.repec.org/data/fingvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.