IDEAS home Printed from https://ideas.repec.org/p/eui/euiwps/eco2001-06.html
   My bibliography  Save this paper

Using high frequency stock market index data to calculate, model and forecast realized return variance

Author

Listed:
  • Roel C.A. OOMEN

Abstract

No abstract is available for this item.

Suggested Citation

  • Roel C.A. OOMEN, 2001. "Using high frequency stock market index data to calculate, model and forecast realized return variance," Economics Working Papers ECO2001/06, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2001/06
    as

    Download full text from publisher

    File URL: http://www.iue.it/PUB/ECO2001-6.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.
    4. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    5. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CIRJE F-Series CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
    6. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    7. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    8. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    9. Adam E Clements & Yin Liao, 2013. "Modeling and forecasting realized volatility: getting the most out of the jump component," NCER Working Paper Series 93, National Centre for Econometric Research.
    10. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    11. van Mierlo, J.G.A., 2001. "Over de verhouding tussen overheid, marktwerking en privatisering. Een economische meta-analyse," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
    13. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Viroj Jienwatcharamongkhol, 2019. "Equity Market Contagion in Return Volatility during Euro Zone and Global Financial Crises: Evidence from FIMACH Model," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    14. Su, Fei & Wang, Xinyi & Yuan, Yulin, 2022. "The intraday dynamics and intraday price discovery of bitcoin," Research in International Business and Finance, Elsevier, vol. 60(C).
    15. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    16. Halbleib Roxana & Voev Valeri, 2011. "Forecasting Multivariate Volatility using the VARFIMA Model on Realized Covariance Cholesky Factors," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 134-152, February.
    17. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    18. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2001/06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cécile Brière (email available below). General contact details of provider: https://edirc.repec.org/data/deiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.