IDEAS home Printed from https://ideas.repec.org/p/ess/wpaper/id7716.html
   My bibliography  Save this paper

Productivity and Efficiency Impacts of Zero Tillage Wheat in Northwest Indo-Gangetic Plains

Author

Listed:
  • Vijesh Krishna
  • Prakashan Veettil

Abstract

Conservation agriculture (CA) technologies are being developed for the cereal production systems of South Asia to address the multifaceted problems of decelerating agricultural productivity, resource scarcity, climate change, and negative environmental externalities generated by the conventional production system. This study is a detailed investigation on one of the prominent CA technologies, namely zero tillage (ZT) wheat, where we quantify productivity and efficiency impacts using stochastic non-smooth envelopment of data approach. This paper analyses the adoption pattern and productivity impacts of a resource-conserving technology (RCT) in wheat cultivation using semi-parametric frontier production approach.

Suggested Citation

  • Vijesh Krishna & Prakashan Veettil, 2015. "Productivity and Efficiency Impacts of Zero Tillage Wheat in Northwest Indo-Gangetic Plains," Working Papers id:7716, eSocialSciences.
  • Handle: RePEc:ess:wpaper:id:7716
    Note: Institutional Papers
    as

    Download full text from publisher

    File URL: http://www.esocialsciences.org/Download/repecDownload.aspx?fname=A2015112175127_39.pdf&fcategory=Articles&AId=7716&fref=repec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, B. U. & Sickles, R. C. & Simar, L., 1998. "Stochastic panel frontiers: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 84(2), pages 273-301, June.
    2. Ekboir, Javier, 2002. "Developing No-Till Packages for Small-Scale Farmers," Facts and Trends/Overview and Outlook 298005, CIMMYT: International Maize and Wheat Improvement Center.
    3. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    4. Kortelainen, Mika, 2008. "Estimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies," MPRA Paper 9257, University Library of Munich, Germany.
    5. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    6. Bouman, B.A.M. & Hengsdijk, H. & Hardy, B. & Bindraban, P.S. & Tuong, T.P. & Ladha, J.K., 2002. "Water-wise Rice Production," IRRI Books, International Rice Research Institute (IRRI), number 281822.
    7. Erenstein, O. & Farooq, U. & Malik, R. K. & Sharif, M., 2007. "Adoption and impacts of zero tillage as a resource conserving technology in the irrigated plains of South Asia," IWMI Research Reports H040663, International Water Management Institute.
    8. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    9. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2007. "Semiparametric efficient estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 136(1), pages 281-301, January.
    10. Rejesus, Roderick M. & Heisey, Paul W. & Smale, Melinda, 1999. "Sources of Productivity Growth in Wheat: A Review of Recent Performance and Medium- to Long-Term Prospects," Economics Working Papers 7693, CIMMYT: International Maize and Wheat Improvement Center.
    11. KNEIP, Alois & SIMAR, Léopold, 1995. "A General Framework for Frontier Estimation with Panel Data," LIDAM Discussion Papers CORE 1995060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Johnson, Andrew L. & Kuosmanen, Timo, 2012. "One-stage and two-stage DEA estimation of the effects of contextual variables," European Journal of Operational Research, Elsevier, vol. 220(2), pages 559-570.
    13. Ali, Mubarik & Byerlee, Derek, 2000. "Productivity growth and resource degradation in Pakistan's Punjab - a decomposition analysis," Policy Research Working Paper Series 2480, The World Bank.
    14. Laxmi, Vijay & Erenstein, Olaf & Gupta, Raj K., 2007. "Impact of Zero Tillage in India's Rice-Wheat Systems," Impact Studies 56093, CIMMYT: International Maize and Wheat Improvement Center.
    15. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    16. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    17. Darryl Holden, 2004. "Testing the Normality Assumption in the Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(5), pages 521-532.
    18. Krishna, Vijesh V. & Mehrotra, Meera Bhatia & Teufel, Nils & Bishnoi, Dalip Kumar, 2012. "Characterizing the Cereal Systems and Identifying the Potential of Conservation Agriculture in South Asia," Socioeconomics Program Working Papers 147109, CIMMYT: International Maize and Wheat Improvement Center.
    19. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishna, Vijesh V. & Veettil, Prakashan C., 2014. "Productivity and efficiency impacts of conservation tillage in northwest Indo-Gangetic Plains," Agricultural Systems, Elsevier, vol. 127(C), pages 126-138.
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Kortelainen, Mika, 2008. "Estimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies," MPRA Paper 9257, University Library of Munich, Germany.
    4. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    5. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    6. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    7. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    8. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.
    9. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    10. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    11. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    12. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    13. Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
    14. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    15. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    16. Timo Kuosmanen & Sheng Dai, 2023. "Modeling economies of scope in joint production: Convex regression of input distance function," Papers 2311.11637, arXiv.org.
    17. Minegishi, Kota, 2013. "Explaining Production Heterogeneity By Contextual Environments: Two-Stage DEA Application to Technical Change Measurement," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150289, Agricultural and Applied Economics Association.
    18. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    19. Alexander Arévalo S & Víctor Giménez G & Diego Prior J, 2022. "Análisis de eficiencia en educación: una aplicación del método StoNED," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 92(2), pages 45-91, October.
    20. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ess:wpaper:id:7716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Padma Prakash (email available below). General contact details of provider: http://www.esocialsciences.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.