IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/79327.html
   My bibliography  Save this paper

Methods for Modelling Response Styles

Author

Listed:
  • Schoonees, P.C.

Abstract

Ratings scales are ubiquitous in empirical research, especially in the social sciences, where they are used for measuring abstract concepts such as opinion or attitude. Survey questions typically employ rating scales, for example when persons are asked to self-report their perceptions of films or their job satisfaction. Yet, using a rating scale is subjective. Some persons may use only the middle of the rating scale, whilst others choose to use only the extremes. Consequently, persons with the same opinion may very well answer the same survey question using different ratings. This leads to the response style problem: How can we take into account that different ratings can potentially have different meanings to different persons when analyzing such data? This dissertation makes methodological and empirical contributions towards modelling rating scale data while accounting for such differences in response styles. The general approach is to identify individuals in the data which exhibit similar response styles, and to extract substantive information only within such groups. These elements naturally lead to the synthesis of cluster analysis and dimensionality reduction methods. In order to identify these response styles, responses to multiple survey questions are used to assess within-subject rating scale usage. Both non-parametric and parametric approaches are formulated and studied, and accompanying open-source software implementations are made available. The added value of using the developed algorithms is illustrated by applying these to empirical data. Applications range from sensometrics and brand studies, to psychology and political science.

Suggested Citation

  • Schoonees, P.C., 2015. "Methods for Modelling Response Styles," ERIM Report Series Research in Management EPS–2015–348–MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:79327
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/79327/Schoonees-PhD-final-23Oct2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van de Velden, Michel & Groenen, Patrick J.F. & Poblome, Jeroen, 2009. "Seriation by constrained correspondence analysis: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3129-3138, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blasius, J. & Greenacre, M. & Groenen, P.J.F. & van de Velden, M., 2009. "Special issue on correspondence analysis and related methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3103-3106, June.
    2. Pieter Schoonees & Michel Velden & Patrick Groenen, 2015. "Constrained Dual Scaling for Detecting Response Styles in Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 968-994, December.
    3. Antonello D’Ambra & Pietro Amenta, 2011. "Correspondence Analysis with Linear Constraints of Ordinal Cross-Classifications," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 70-92, April.
    4. D'Ambra, Luigi & Amenta, Pietro & D'Ambra, Antonello & de Tibeiro, Jules S., 2021. "A study of the family service expenditures and the socio-demographic characteristics via fixed marginals correspondence analysis," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:79327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.