IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/16236.html
   My bibliography  Save this paper

Scheduling deliveries under uncertainty

Author

Listed:
  • Gabor, A.F.
  • Dekker, R.
  • van Dijk, T.
  • van Scheepstal, P.

Abstract

Quite often transportation companies face two types of jobs, ones which they can plan themselves and ones which have to be done on call. In this paper we study the scheduling of these jobs, while we assume that job durations are known beforehand as well as windows in which the jobs need to be done. We develop several heuristics to solve the problem at hand. The most successful are based on defining an appropriate buffer. The methods are assessed in extensive experiments on two aspects, viz. efficiency, in the sense that they carry out many jobs and certainty, in the sense that they provide information beforehand about which jobs they will execute.

Suggested Citation

  • Gabor, A.F. & Dekker, R. & van Dijk, T. & van Scheepstal, P., 2009. "Scheduling deliveries under uncertainty," ERIM Report Series Research in Management ERS-2009-040-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:16236
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/16236/ERS-2009-040-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    2. Raymond K. Cheung & Warren B. Powell, 1996. "An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management," Operations Research, INFORMS, vol. 44(6), pages 951-963, December.
    3. Siwate Rojanasoonthon & Jonathan Bard, 2005. "A GRASP for Parallel Machine Scheduling with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 32-51, February.
    4. Linos F. Frantzeskakis & Warren B. Powell, 1990. "A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems," Transportation Science, INFORMS, vol. 24(1), pages 40-57, February.
    5. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    6. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    2. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    3. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
    4. Antoine Sauré & Jonathan Patrick & Martin L. Puterman, 2015. "Simulation-Based Approximate Policy Iteration with Generalized Logistic Functions," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 579-595, August.
    5. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    6. George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
    7. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    8. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    9. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    10. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
    11. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    12. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
    13. Warren Powell & Andrzej Ruszczyński & Huseyin Topaloglu, 2004. "Learning Algorithms for Separable Approximations of Discrete Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 814-836, November.
    14. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    15. Song, Haiqing & Huang, Huei-Chuen, 2008. "A successive convex approximation method for multistage workforce capacity planning problem with turnover," European Journal of Operational Research, Elsevier, vol. 188(1), pages 29-48, July.
    16. Song, Haiqing & Cheung, Raymond K. & Wang, Haiyan, 2014. "An arc-exchange decomposition method for multistage dynamic networks with random arc capacities," European Journal of Operational Research, Elsevier, vol. 233(3), pages 474-487.
    17. Warren B. Powell & Michael T. Towns & Arun Marar, 2000. "On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance," Transportation Science, INFORMS, vol. 34(1), pages 67-85, February.
    18. Shi, Ning & Song, Haiqing & Powell, Warren B., 2014. "The dynamic fleet management problem with uncertain demand and customer chosen service level," International Journal of Production Economics, Elsevier, vol. 148(C), pages 110-121.
    19. Charles I. Nkeki, 2013. "Dynamic Optimization Technique for Distribution of Goods with Stochastic Shortages," Journal of Optimization, Hindawi, vol. 2013, pages 1-12, December.
    20. Dong‐Ping Song & Jonathan Carter, 2008. "Optimal empty vehicle redistribution for hub‐and‐spoke transportation systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(2), pages 156-171, March.

    More about this item

    Keywords

    T57.79; distribution problems; stochastic scheduling;
    All these keywords.

    JEL classification:

    • L23 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Organization of Production
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:16236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.