IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/78189.html
   My bibliography  Save this paper

Symbolic Multidimensional Scaling

Author

Listed:
  • Groenen, P.J.F.
  • Terada, Y.

Abstract

__Abstract__ Multidimensional scaling (MDS) is a technique that visualizes dissimilarities between pairs of objects as distances between points in a low dimensional space. In symbolic MDS, a dissimilarity is not just a value but can represent an interval or even a histogram. Here, we present an overview of developments for symbolic MDS. We discuss how interval dissimilarities they can be represented by (concentric) circles or rectangles, how replications can be represented by a three-way MDS version, and show how nested intervals of distances can be obtained for representing histogram dissimilarities. The various models are illustrated by empirical examples.

Suggested Citation

  • Groenen, P.J.F. & Terada, Y., 2015. "Symbolic Multidimensional Scaling," Econometric Institute Research Papers EI 2015-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:78189
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/78189/EI2015-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Groenen, P.J.F. & Winsberg, S. & Rodriguez, O. & Diday, E., 2006. "I-Scal: Multidimensional scaling of interval dissimilarities," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 360-378, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pełka Marcin, 2019. "Assessment of the Development of the European Oecd Countries with the Application of Linear Ordering and Ensemble Clustering of Symbolic Data," Folia Oeconomica Stetinensia, Sciendo, vol. 19(2), pages 117-133, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    2. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    3. Pełka Marcin, 2019. "Analysis of Happiness in EU Countries Using the Multi-Model Classification based on Models of Symbolic Data," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(3), pages 15-25, September.
    4. Pełka Marcin, 2019. "Assessment of the Development of the European Oecd Countries with the Application of Linear Ordering and Ensemble Clustering of Symbolic Data," Folia Oeconomica Stetinensia, Sciendo, vol. 19(2), pages 117-133, December.
    5. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    6. Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Grażyna Dehnel & Marek Walesiak, 2019. "A Comparative Analysis Of Economic Efficiency Of Medium-Sized Manufacturing Enterprises In Districts Of Wielkopolska Province Using The Hybrid Approach With Metric And Interval-Valued Data," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 49-68, June.
    8. Groenen, P.J.F. & Winsberg, S., 2006. "3WaySym-Scal: three-way symbolic multidimensional scaling," Econometric Institute Research Papers EI 2006-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    10. Dehnel Grażyna & Walesiak Marek, 2019. "A Comparative Analysis Of Economic Efficiency Of Medium-Sized Manufacturing Enterprises In Districts Of Wielkopolska Province Using The Hybrid Approach With Metric And Interval-Valued Data," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 49-67, June.
    11. Zaborski Artur & Pełka Marcin, 2023. "The Unfolding Analysis for Symbolic Objects Based on the Example of the External Car Advertisement Evaluation," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 27(4), pages 15-28, December.
    12. Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.

    More about this item

    Keywords

    MDS; Multidimensional Scaling;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:78189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.