IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/20374.html
   My bibliography  Save this paper

Greening Supply Chains: Impact on Cost and Design

Author

Listed:
  • Mallidis, I.
  • Vlachos, D.
  • Dekker, R.

Abstract

The consideration of environmental issues has emerged as a topic of critical importance for today’s globalized supply chains. The purpose of this paper is to develop a strategic-tactical decision-support methodology to assist managers in evaluating the impact of environmental issues, related to transportation emissions, on the transport geography of a region. Specifically we provide a tool that addresses: (i) supply chain network design, including port of entry and transportation mode, and (ii) decisions on leasing vs. outsourcing of transportation and distribution centers. The applicability of the proposed methodology is examined through the development of a sustainable supply chain network in the South-Eastern Europe region. The results indicate that in most cases outsourcing distribution centers to Third Party Logistics operators improves both the cost and the environmental performance of a company. In all cases outsourcing of transportation operations minimizes the amount of CO2 and PM emissions generated, while leasing minimizes costs.

Suggested Citation

  • Mallidis, I. & Vlachos, D. & Dekker, R., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39a, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:20374
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/20374/EI2010-39a.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    2. Mark S. Daskin & Lawrence V. Snyder & Rosemary T. Berger, 2005. "Facility Location in Supply Chain Design," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 39-65, Springer.
    3. Mallidis, I. & Vlachos, D. & Dekker, R., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39a, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    5. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Plas, C. & Tervonen, T. & Dekker, R., 2012. "Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design," Econometric Institute Research Papers EI2012-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Mallidis, I. & Dekker, R. & Vlachos, D., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39b, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
    4. Shaikha Al-Nuaimi & Abdul-Aziz A. Banawi & Sami G. Al-Ghamdi, 2019. "Environmental and Economic Life Cycle Analysis of Primary Construction Materials Sourcing under Geopolitical Uncertainties: A Case Study of Qatar," Sustainability, MDPI, vol. 11(21), pages 1-26, October.
    5. Mallidis, Ioannis & Dekker, Rommert & Vlachos, Dimitrios, 2012. "The impact of greening on supply chain design and cost: a case for a developing region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 118-128.
    6. Konur, Dinçer, 2014. "Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks," International Journal of Production Economics, Elsevier, vol. 153(C), pages 268-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallidis, Ioannis & Dekker, Rommert & Vlachos, Dimitrios, 2012. "The impact of greening on supply chain design and cost: a case for a developing region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 118-128.
    2. van der Plas, C. & Tervonen, T. & Dekker, R., 2012. "Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design," Econometric Institute Research Papers EI2012-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    4. Margolis, Joshua T. & Sullivan, Kelly M. & Mason, Scott J. & Magagnotti, Mariah, 2018. "A multi-objective optimization model for designing resilient supply chain networks," International Journal of Production Economics, Elsevier, vol. 204(C), pages 174-185.
    5. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    6. Sprenger, Philipp & Parlings, Matthias & Hegmanns, Tobias, 2014. "Planning Approach for Robust Manufacturing Footprint Decisions," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 29-50, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Cardoso, Sónia R. & Barbosa-Póvoa, Ana Paula F.D. & Relvas, Susana, 2013. "Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 226(3), pages 436-451.
    8. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    9. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
    10. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    11. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    12. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    13. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    14. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    15. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    16. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.
    17. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    18. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    19. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    20. Jimenez, Charlotte & Dauzère-Pérès, Stéphane & Feuillebois, Christian & Pauly, Eric, 2013. "Optimizing the positioning and technological choices of RFID elements for aircraft part identification," European Journal of Operational Research, Elsevier, vol. 227(2), pages 350-357.

    More about this item

    Keywords

    carbon footprint; supply chain design; supply chain sustainability;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:20374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.