IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/19359.html
   My bibliography  Save this paper

Decomposing bias in expert forecast

Author

Listed:
  • Franses, Ph.H.B.F.

Abstract

Forecasts in the airline industry are often based in part on statistical models but mostly on expert judgment. It is frequently documented in the forecasting literature that expert forecasts are biased but that their accuracy is higher than model forecasts. If an expert forecast can be approximated by the weighted sum of a part that can be replicated by an analyst and a non-replicable part containing managerial intuition, the question arises which of two causes the bias. This paper advocates a simple regression-based strategy to decompose bias in expert forecasts. An illustration of the method to a unique database on airline revenues shows how it can be used to improve their experts’ forecasts.

Suggested Citation

  • Franses, Ph.H.B.F., 2010. "Decomposing bias in expert forecast," Econometric Institute Research Papers EI 2010-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:19359
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/19359/EI2010-26.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    2. Lawrence, Michael & O'Connor, Marcus & Edmundson, Bob, 2000. "A field study of sales forecasting accuracy and processes," European Journal of Operational Research, Elsevier, vol. 122(1), pages 151-160, April.
    3. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    2. Chang, Chia Lin & Franses, Philip Hans & Mcaleer, Michael, 2012. "Evaluating Individual and Mean Non-Replicable Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 22-43, September.
    3. Phillip M. Yelland & Shinji Kim & Renée Stratulate, 2010. "A Bayesian Model for Sales Forecasting at Sun Microsystems," Interfaces, INFORMS, vol. 40(2), pages 118-129, April.
    4. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    5. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    7. Philip Hans Franses, 2011. "Averaging Model Forecasts and Expert Forecasts: Why Does It Work?," Interfaces, INFORMS, vol. 41(2), pages 177-181, April.
    8. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    9. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
    10. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    11. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The impact of forecasting on companies' performance: Analysis in a multivariate setting," International Journal of Production Economics, Elsevier, vol. 133(1), pages 458-469, September.
    12. Wan, Xiang & Sanders, Nadia R., 2017. "The negative impact of product variety: Forecast bias, inventory levels, and the role of vertical integration," International Journal of Production Economics, Elsevier, vol. 186(C), pages 123-131.
    13. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    14. Franses, Philip Hans, 2013. "Improving judgmental adjustment of model-based forecasts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 1-8.
    15. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
    16. Önkal, Dilek & Lawrence, Michael & Zeynep SayIm, K., 2011. "Influence of differentiated roles on group forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 27(1), pages 50-68, January.
    17. Önkal, Dilek & Zeynep Sayım, K. & Lawrence, Michael, 2012. "Wisdom of group forecasts: Does role-playing play a role?," Omega, Elsevier, vol. 40(6), pages 693-702.
    18. Önkal, Dilek & Lawrence, Michael & Zeynep Sayım, K., 2011. "Influence of differentiated roles on group forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 27(1), pages 50-68.
    19. Van den Broeke, Maud & De Baets, Shari & Vereecke, Ann & Baecke, Philippe & Vanderheyden, Karlien, 2019. "Judgmental forecast adjustments over different time horizons," Omega, Elsevier, vol. 87(C), pages 34-45.
    20. Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:19359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.