Functional approximations to posterior densities: a neural network approach to efficient sampling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Chib, Siddhartha & Greenberg, Edward, 1996.
"Markov Chain Monte Carlo Simulation Methods in Econometrics,"
Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
- Siddhartha Chib & Edward Greenberg, 1994. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometrics 9408001, University Library of Munich, Germany, revised 23 Feb 1995.
- Pesaran, M. Hashem & Smith, Ron, 1995.
"Estimating long-run relationships from dynamic heterogeneous panels,"
Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
- Pesaran, M.H. & Smith, R., 1992. "Estimating Long-Run Relationships From Dynamic Heterogeneous Panels," Cambridge Working Papers in Economics 9215, Faculty of Economics, University of Cambridge.
- Kloek, Tuen & van Dijk, Herman K, 1978.
"Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo,"
Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
- Kloek, T. & van Dijk, H. K., 1976. "BAYESIAN ESTIMATES OF EQUATION SYSTEM PARAMETERS An Application of Integration by Monte Carlo," Econometric Institute Archives 272139, Erasmus University Rotterdam.
- Paap, Richard & van Dijk, Herman K, 2003.
"Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
- Richard Paap & Herman K. van Dijk, 1999. "Bayes Estimates of Markov Trends in possibly Cointegrated Series: An Application to US Consumption and Income," Tinbergen Institute Discussion Papers 99-024/4, Tinbergen Institute.
- Paap, R. & van Dijk, H.K., 2002. "Bayes estimates of Markov trends in possibly cointegrated series: an application to US consumption and income," Econometric Institute Research Papers EI 2002-42, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Bauwens, L. & Bos, C.S. & van Dijk, H.K. & van Oest, R.D., 2002. "Adaptive polar sampling, a class of flexibel and robust Monte Carlo integration methods," Econometric Institute Research Papers EI 2002-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- van Dijk, H. K. & Kloek, T., 1980.
"Further experience in Bayesian analysis using Monte Carlo integration,"
Journal of Econometrics, Elsevier, vol. 14(3), pages 307-328, December.
- van Dijk, H. K. & Kloek, T., 1980. "Further Experience In Bayesian Analysis Using Monte Carlo Integration," Econometric Institute Archives 272261, Erasmus University Rotterdam.
- Luc Bauwens & Charles S. Bos & Herman K. van Dijk & Rutger D. van Oest, 2002. "Adaptive Polar Sampling," Computing in Economics and Finance 2002 307, Society for Computational Economics.
- Schotman, Peter & van Dijk, Herman K., 1991.
"A Bayesian analysis of the unit root in real exchange rates,"
Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
- Schotman P. & van Dijk, H. K., 1989. "A Bayesian Analysis Of The Unit Root In Real Exchange Rates," Econometric Institute Archives 272390, Erasmus University Rotterdam.
- John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
- Bauwens, L. & Dijk, H. K., 1989. "Bayesian Limited Information Analysis Revisited," Econometric Institute Archives 272386, Erasmus University Rotterdam.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2003. "Neural network approximations to posterior densities: an analytical approach," Econometric Institute Research Papers EI 2003-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2004. "Neural network based approximations to posterior densities: a class of flexible sampling methods with applications to reduced rank models," Econometric Institute Research Papers EI 2004-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2004. "Neural network based approximations to posterior densities: a class of flexible sampling methods with applications to reduced rank models," Econometric Institute Research Papers EI 2004-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004.
"Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods,"
Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
- Bauwens, L. & Bos, C.S. & van Dijk, H.K. & van Oest, R.D., 2003. "Adaptive radial-based direction sampling; Some flexible and robust Monte Carlo integration methods," Econometric Institute Research Papers EI 2003-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- BAUWENS, Luc & BOS, Charles S. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," LIDAM Reprints CORE 1731, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006.
"Econometrics: A Bird’s Eye View,"
Cambridge Working Papers in Economics
0655, Faculty of Economics, University of Cambridge.
- Geweke, John F. & Horowitz, Joel L. & Pesaran, M. Hashem, 2006. "Econometrics: A Bird's Eye View," IZA Discussion Papers 2458, Institute of Labor Economics (IZA).
- John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
- Richard Kleijn & Herman K. van Dijk, 2006.
"Bayes model averaging of cyclical decompositions in economic time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 191-212.
- Richard Kleijn & Herman K. van Dijk, 2006. "Bayes model averaging of cyclical decompositions in economic time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 191-212, March.
- Kleijn, R.H. & van Dijk, H.K., 2003. "Bayes model averaging of cyclical decompositions in economic time series," Econometric Institute Research Papers EI 2003-48, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2003. "Neural network approximations to posterior densities: an analytical approach," Econometric Institute Research Papers EI 2003-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007.
"Simulation based Bayesian econometric inference: principles and some recent computational advances,"
LIDAM Discussion Papers CORE
2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & van Dijk, H.K. & van Oest, R.D., 2007. "Simulation based bayesian econometric inference: principles and some recent computational advances," Econometric Institute Research Papers EI 2007-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- BAUWENS, Luc & BOS, Charles S. & VAN DIJK, Herman K., 1999.
"Adaptive polar sampling with an application to a Bayes measure of value-at-risk,"
LIDAM Discussion Papers CORE
1999057, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Bos, C.S. & van Dijk, H.K., 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Econometric Institute Research Papers TI 99-082/4, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Luc Bauwens & Charles S. Bos & Herman K. van Dijk, 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Tinbergen Institute Discussion Papers 99-082/4, Tinbergen Institute.
- K. Van Dijk & Luc Bauwens & Charles Bos, 2000. "Adaptive Polar Sampling With An Application To A Bayes Measure Of Value-At-Risk," Computing in Economics and Finance 2000 145, Society for Computational Economics.
- Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
- Fuentes-Albero, Cristina & Melosi, Leonardo, 2013.
"Methods for computing marginal data densities from the Gibbs output,"
Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
- Cristina Fuentes-Albero & Leonardo Melosi, 2011. "Methods for Computing Marginal Data Densities from the Gibbs Output," Departmental Working Papers 201131, Rutgers University, Department of Economics.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
- Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012.
"A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
- David Ardia & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2010. "A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihood," Tinbergen Institute Discussion Papers 10-059/4, Tinbergen Institute.
- David Ardia & Lennart Hoogerheide & Herman K. van Dijk, 2009. "To Bridge, to Warp or to Wrap? A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihoods," Tinbergen Institute Discussion Papers 09-017/4, Tinbergen Institute.
- Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019.
"Multilateral index number systems for international price comparisons: Properties, existence and uniqueness,"
Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
- Gholamreza Hajargasht & Prasada Rao, 2018. "Multilateral Index Number Systems for International Price Comparisons: Properties, Existence and Uniqueness," Papers 1811.04197, arXiv.org, revised Dec 2018.
- Gholamreza Hajargasht & D.S. Prasada Rao, 2019. "Multilateral Index Number Systems for International Price Comparisons: Properties, Existence and Uniqueness," CEPA Working Papers Series WP032019, School of Economics, University of Queensland, Australia.
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
Bayesian inference; Markov chain Monte Carlo; importance sampling; neural networks;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1727. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.