IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1684.html
   My bibliography  Save this paper

Multiple-Depot Integrated Vehicle and Crew Scheduling

Author

Listed:
  • Huisman, D.
  • Freling, R.
  • Wagelmans, A.P.M.

Abstract

This paper presents two different models and algorithms for integrated vehicle and crew scheduling in the multiple-depot case. The algorithms are both based on a combination of column generation and Lagrangian relaxation. Furthermore, we compare those integrated approaches with each other and with the traditional sequential one on random generated as well as real-world data instances for a suburban/extra-urban mass transit system. To simulate such a transit system, we propose a new way of generating randomly data instances such that their properties are the same as for our real-world instances.

Suggested Citation

  • Huisman, D. & Freling, R. & Wagelmans, A.P.M., 2003. "Multiple-Depot Integrated Vehicle and Crew Scheduling," Econometric Institute Research Papers EI 2003-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1684
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1684/feweco20030217143604.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.
    2. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    3. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    4. Bach, L. & Dollevoet, T.A.B. & Huisman, D., 2014. "Integrating Timetabling and Crew," Econometric Institute Research Papers EI 2014-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Huisman, D. & Jans, R.F. & Peeters, M. & Wagelmans, A.P.M., 2003. "Combining Column Generation and Lagrangian Relaxation," ERIM Report Series Research in Management ERS-2003-092-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Mesquita, Marta & Moz, Margarida & Paias, Ana & Pato, Margarida, 2013. "A decomposition approach for the integrated vehicle-crew-roster problem with days-off pattern," European Journal of Operational Research, Elsevier, vol. 229(2), pages 318-331.
    7. Hollis, B.L. & Forbes, M.A. & Douglas, B.E., 2006. "Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post," European Journal of Operational Research, Elsevier, vol. 173(1), pages 133-150, August.
    8. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.
    9. Huisman, Dennis & Wagelmans, Albert P.M., 2006. "A solution approach for dynamic vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 453-471, July.
    10. Asvin Goel, 2010. "Truck Driver Scheduling in the European Union," Transportation Science, INFORMS, vol. 44(4), pages 429-441, November.
    11. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    12. Eliashberg, J. & Hegie, Q. & Ho, J. & Huisman, D. & Miller, S.J. & Swami, S. & Weinberg, C.B. & Wierenga, B., 2007. "Demand-driven scheduling of movies in a multiplex," Econometric Institute Research Papers EI 2007-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Asvin Goel & Thibaut Vidal, 2014. "Hours of Service Regulations in Road Freight Transport: An Optimization-Based International Assessment," Transportation Science, INFORMS, vol. 48(3), pages 391-412, August.
    14. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    15. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    16. Zäpfel, Günther & Bögl, Michael, 2008. "Multi-period vehicle routing and crew scheduling with outsourcing options," International Journal of Production Economics, Elsevier, vol. 113(2), pages 980-996, June.
    17. van Lieshout, R.N. & Mulder, J. & Huisman, D., 2016. "The Vehicle Rescheduling Problem with Retiming," Econometric Institute Research Papers EI2016-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Dauzère-Pérès, Stéphane & De Almeida, David & Guyon, Olivier & Benhizia, Faten, 2015. "A Lagrangian heuristic framework for a real-life integrated planning problem of railway transportation resources," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 138-150.
    19. de Groot, S.W. & Huisman, D., 2004. "Vehicle and crew scheduling: solving large real-world instances with an integrated approach," Econometric Institute Research Papers EI 2004-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.