IDEAS home Printed from https://ideas.repec.org/p/ekd/002672/4010.html
   My bibliography  Save this paper

Substitution Elasticities for CGE Models

Author

Listed:
  • Simon Koesler
  • Michael Schymura

Abstract

Combating climate change and other environmental problems are among the main challenges of the current century. As a consequence, researchers as well as policymakers are discussing worldwide how regulative interventions should be designed to cope with these tasks. From an economic perspective, effectiveness, cost-efficiency and distribution issues are crucial for any form of future regulation. Ultimately, this results in the need for capable and above all reliable instruments to assess environmentally motivated regulations ex ante. In modern applied economics and most notably in the field of environmental and climate policy, Computable General Equilibrium (CGE) models have proven to be one of the leading instruments to evaluate alternative policy measures. As is true also for other micro-consistent and policy-oriented models, elasticities are key parameters for CGE models. But despite the central role of elasticities, the current situation of elasticities is rather unsatisfying and there exist only few estimates of the required elasticities. As a consequence, modellers frequently feel impelled to employ in their models elasticities from various originally unrelated sources or to use elasticities derived from different conceptual frameworks, thereby exposing themselves to criticism with respect to the usage of potentially inconsistent parameters estimates. In this paper we seek to contribute to the solution of this problem and aim at overcoming the lack of adequate estimates.We consistently estimate substitution elasticities for the well-established three level nested CES KLEM production structure on the on the basis of different non-linear least squares estimation processes. In the process we take advantage of the World Input-Output Database (WIOD). The new WIOD database allows us for the first time to use one consistent dataset for the estimation process and gives us the opportunity to derive elasticities from the same data which researchers can also use to calibrate their models.Our results show that compared to standard linear estimations using Kmenta approximations, in this context non-linear estimation techniques perform significantly better. Moreover, during the time period we consider, no significant change in input substitutability takes place over time. Hence for most sectors we do not observe technological change through this channel. Although technological progress in the form of changing substitution elasticities may potentially be an issue when studying longer time periods. On the basis of our estimations, we demonstrate that the common practice of using Cobb-Douglas or Leontief production functions in economic models must be rejected for the majority of sectors. As a consequence we object a simplified approach to the choice of substitution elasticities in the framework of policy oriented economic modelling. In particular in response to this result, we provide a comprehensive set of consistently estimated substitution elasticities covering 35 sectors. Therewith we hope to make a valuable contribution to making instruments designed to evaluate policy measures ex-ante more reliable and support policy makers in their efforts to cope with global environmental problems such as climate change.

Suggested Citation

  • Simon Koesler & Michael Schymura, 2012. "Substitution Elasticities for CGE Models," EcoMod2012 4010, EcoMod.
  • Handle: RePEc:ekd:002672:4010
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/SubstitutionElasticities_VEcoMod_0.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caselli, Francesco, 2005. "Accounting for Cross-Country Income Differences," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 9, pages 679-741, Elsevier.
    2. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    3. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics.
    6. Browning, Martin & Hansen, Lars Peter & Heckman, James J., 1999. "Micro data and general equilibrium models," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 8, pages 543-633, Elsevier.
    7. Böhringer, Christoph & Rutherford, Thomas Fox & Wiegard, Wolfgang, 2003. "Computable general equilibrium analysis: Opening a black box," ZEW Discussion Papers 03-56, ZEW - Leibniz Centre for European Economic Research.
    8. Edward J. Balistreri & Christine A. McDaniel & Eina Vivian Wong, 2003. "An Estimation of U.S. Industry-Level Capital-Labor Substitution," Computational Economics 0303001, University Library of Munich, Germany.
    9. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    10. Caselli, Francesco, 2005. "Accounting for cross-country income differences," LSE Research Online Documents on Economics 5266, London School of Economics and Political Science, LSE Library.
    11. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(2), pages 201-218.
    12. Thursby, Jerry G & Lovell, C A Knox, 1978. "An Investigation of the Kmenta Approximation to the CES Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 363-377, June.
    13. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    14. Arne Henningsen & Géraldine Henningsen, 2011. "Econometric Estimation of the “Constant Elasticity of Substitution" Function in R: Package micEconCES," IFRO Working Paper 2011/9, University of Copenhagen, Department of Food and Resource Economics.
    15. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    16. Balistreri, Edward J. & McDaniel, Christine A. & Wong, Eina Vivian, 2003. "An estimation of US industry-level capital-labor substitution elasticities: support for Cobb-Douglas," The North American Journal of Economics and Finance, Elsevier, vol. 14(3), pages 343-356, December.
    17. Caselli, Francesco, 2005. "Accounting for cross-country income differences," LSE Research Online Documents on Economics 3567, London School of Economics and Political Science, LSE Library.
    18. McKitrick, Ross R., 1998. "The econometric critique of computable general equilibrium modeling: the role of functional forms," Economic Modelling, Elsevier, vol. 15(4), pages 543-573, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koesler, Simon & Schymura, Michael, 2012. "Substitution elasticities in a CES production framework: An empirical analysis on the basis of non-linear least squares estimations," ZEW Discussion Papers 12-007, ZEW - Leibniz Centre for European Economic Research.
    2. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    3. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    4. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    5. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    6. Michal Antoszewski, 2017. "Panel estimation of sectoral substitution elasticities for CES production functions," EcoMod2017 10160, EcoMod.
    7. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    8. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    9. Mallick, Debdulal, 2012. "The role of the elasticity of substitution in economic growth: A cross-country investigation," Labour Economics, Elsevier, vol. 19(5), pages 682-694.
    10. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    11. Zachlod-Jelec, Magdalena & Boratynski, Jakub, 2016. "How large and uncertain are costs of 2030 GHG emissions reduction target for the European countries? Sensitivity analysis in a global CGE model," MF Working Papers 26, Ministry of Finance in Poland.
    12. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    13. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    15. Frieling, Julius & Madlener, Reinhard, 2016. "Estimation of Substitution Elasticities in Three-Factor Production Functions: Identifying the Role of Energy," FCN Working Papers 1/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Sep 2016.
    16. Martin de Wit & Matthew Kuperus Heun & Douglas J Crookes, 2013. "An overview of salient factors, relationships and values to support integrated energy-economic systems dynamic modelling," Working Papers 02/2013, Stellenbosch University, Department of Economics.
    17. Bui, Linh & Hoang, Huyen & Bui, Hang, 2015. "Estimating the Constant Elasticity of Substitution Function of Rice Production.The case of Vietnam in 2012," MPRA Paper 71224, University Library of Munich, Germany.
    18. Robert S. Chirinko & Debdulal Mallick, 2014. "The Substitution Elasticity, Factor Shares, Long-Run Growth, and the Low-Frequency Panel Model," CESifo Working Paper Series 4895, CESifo.
    19. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    20. Mallick, Debdulal, 2010. "Capital-labor substitution and balanced growth," Journal of Macroeconomics, Elsevier, vol. 32(4), pages 1131-1142, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:002672:4010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.