IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/67454.html
   My bibliography  Save this paper

Execution in an aggregator

Author

Listed:
  • Oomen, Roel

Abstract

An aggregator is a technology that consolidates liquidity—in the form of bid and ask prices and amounts—from multiple sources into a single unified order book to facilitate ‘best-price’ execution. It is widely used by traders in financial markets, particularly those in the globally fragmented spot currency market. In this paper, I study the properties of execution in an aggregator where multiple liquidity providers (LPs) compete for a trader’s uninformed flow. There are two main contributions. Firstly, I formulate a model for the liquidity dynamics and contract formation process, and use this to characterize key trading metrics such as the observed inside spread in the aggregator, the reject rate due to the so-called ‘last-look’ trade acceptance process, the effective spread that the trader pays, as well as the market share and gross revenues of the LPs. An important observation here is that aggregation induces adverse selection where the LP that receives the trader’s deal request will suffer from the ‘Winner’s curse’, and this effect grows stronger when the trader increases the number of participants in the aggregator. To defend against this, the model allows LPs to adjust the nominal spread they charge or alter the trade acceptance criteria. This interplay is a key determinant of transaction costs. Secondly, I analyse the properties of different execution styles. I show that when the trader splits her order across multiple LPs, a single provider that has quick market access and for whom it is relatively expensive to internalize risk can effectively force all other providers to join her in externalizing the trader’s flow thereby maximizing the market impact and aggregate hedging costs. It is therefore not only the number, but also the type of LP and execution style adopted by the trader that determines transaction costs.

Suggested Citation

  • Oomen, Roel, 2017. "Execution in an aggregator," LSE Research Online Documents on Economics 67454, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:67454
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/67454/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    2. Kagel, John H. & Levin, Dan, 1986. "The Winner's Curse and Public Information in Common Value Auctions," American Economic Review, American Economic Association, vol. 76(5), pages 894-920, December.
    3. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. 'Alvaro Cartea & Sebastian Jaimungal & Tianyi Jia, 2020. "Trading Foreign Exchange Triplets," Papers 2004.12011, arXiv.org.
    2. Andreas Schrimpf & Vladyslav Sushko, 2019. "FX trade execution: complex and highly fragmented," BIS Quarterly Review, Bank for International Settlements, December.
    3. Alvaro Cartea & Sebastian Jaimungal & Jamie Walton, 2018. "Foreign Exchange Markets with Last Look," Papers 1806.04460, arXiv.org.
    4. Butz, M. & Oomen, R., 2019. "Internalisation by electronic FX spot dealers," LSE Research Online Documents on Economics 90485, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Kathleen Ngangoué & Georg Weizsäcker, 2021. "Learning from Unrealized versus Realized Prices," American Economic Journal: Microeconomics, American Economic Association, vol. 13(2), pages 174-201, May.
    2. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    3. Ahn, Yongkil & Tsai, Shih-Chuan, 2021. "What factors are associated with stock price jumps in high frequency?," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    4. Roel Oomen, 2017. "Execution in an aggregator," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 383-404, March.
    5. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    6. Kim Christensen & Roel Oomen & Roberto Renò, 2016. "The Drift Burst Hypothesis," CREATES Research Papers 2016-28, Department of Economics and Business Economics, Aarhus University.
    7. Xiao, Yuewen & Zhao, Jing, 2021. "Price dynamics of individual stocks: Jumps and information," Finance Research Letters, Elsevier, vol. 38(C).
    8. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    9. Daher, Wassim & Karam, Fida & Ahmed, Naveed, 2023. "Insider Trading with Semi-Informed Traders and Information Sharing: The Stackelberg Game," MPRA Paper 118138, University Library of Munich, Germany.
    10. Berentsen, Aleksander & Huber, Samuel & Marchesiani, Alessandro, 2016. "The societal benefit of a financial transaction tax," European Economic Review, Elsevier, vol. 89(C), pages 303-323.
    11. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    12. Grout, Paul A. & Zalewska, Anna, 2012. "The effect of option granting on executive stock purchases," Economics Letters, Elsevier, vol. 114(1), pages 12-15.
    13. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    14. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    15. Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "The information content of market liquidity: An empirical analysis of liquidity at the Oslo Stock Exchange?," Working Paper 2009/26, Norges Bank.
    16. Lones Smith, 2000. "Private Information and Trade Timing," American Economic Review, American Economic Association, vol. 90(4), pages 1012-1018, September.
    17. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    18. Krishnamurti, Chandrasekhar & Pensiero, Domenico & Velayutham, Eswaran, 2021. "Corruption risk and stock market effects: Evidence from the defence industry," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    19. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    20. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.

    More about this item

    Keywords

    aggregation; liquidity access; transaction costs; adverse selection; prisoner's dilemma; market impact;
    All these keywords.

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:67454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.