IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/65165.html
   My bibliography  Save this paper

Estimation for dynamic and static panel probit models with large individual effects

Author

Listed:
  • Gao, Wei
  • Bergsma, Wicher
  • Yao, Qiwei

Abstract

For discrete panel data, the dynamic relationship between successive observations is often of interest. We consider a dynamic probit model for short panel data. A problem with estimating the dynamic parameter of interest is that the model contains a large number of nuisance parameters, one for each individual. Heckman proposed to use maximum likelihood estimation of the dynamic parameter, which, however, does not perform well if the individual effects are large. We suggest new estimators for the dynamic parameter, based on the assumption that the individual parameters are random and possibly large. Theoretical properties of our estimators are derived, and a simulation study shows they have some advantages compared with Heckman's estimator and the modified profile likelihood estimator for fixed effects.

Suggested Citation

  • Gao, Wei & Bergsma, Wicher & Yao, Qiwei, 2017. "Estimation for dynamic and static panel probit models with large individual effects," LSE Research Online Documents on Economics 65165, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:65165
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/65165/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    2. Francesco Bartolucci & Valentina Nigro, 2010. "A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n-Consistent Conditional Estimator," Econometrica, Econometric Society, vol. 78(2), pages 719-733, March.
    3. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296, Elsevier.
    4. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    5. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    6. Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 647-666.
    7. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    8. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    9. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    10. Rosen, Sherwin, 2007. "Studies in Labor Markets," National Bureau of Economic Research Books, University of Chicago Press, number 9780226726304.
    11. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    12. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    13. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    14. James J. Heckman, 1981. "Heterogeneity and State Dependence," NBER Chapters, in: Studies in Labor Markets, pages 91-140, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    2. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    3. Arellano, Manuel & Carrasco, Raquel, 2003. "Binary choice panel data models with predetermined variables," Journal of Econometrics, Elsevier, vol. 115(1), pages 125-157, July.
    4. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    5. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    6. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    7. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    8. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    9. Francesco Bartolucci & Valentina Nigro & Claudia Pigini, 2018. "Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 61-88, January.
    10. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    11. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    12. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    13. repec:spo:wpecon:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    14. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    15. repec:hal:wpspec:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    16. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    17. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    18. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    19. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    20. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    21. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    22. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    23. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    24. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    25. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    26. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    27. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    28. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    29. Ivan Fernandez-Val, 2005. "Estimation of Structural Parameters and Marginal Effects in Binary Choice Panel Data Models with Fixed Effects," Boston University - Department of Economics - Working Papers Series WP2005-38, Boston University - Department of Economics.
    30. Bo E. Honoré & Martin Weidner, 2021. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Working Papers 2021-79, Princeton University. Economics Department..
    31. Fernández-Val, Iván, 2009. "Fixed effects estimation of structural parameters and marginal effects in panel probit models," Journal of Econometrics, Elsevier, vol. 150(1), pages 71-85, May.

    More about this item

    Keywords

    Dynamic probit regression; generalized linear models; panel data; probit models; static probit regression;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:65165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.