IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/25165.html
   My bibliography  Save this paper

Data-driven wavelet-Fisz methodology for nonparametric function estimation

Author

Listed:
  • Fryzlewicz, Piotr

Abstract

We propose a wavelet-based technique for the nonparametric estimation of functions contaminated with noise whose mean and variance are linked via a possibly unknown variance function. Our method, termed the data-driven wavelet-Fisz technique, consists of estimating the variance function via a Nadaraya-Watson estimator, and then performing a wavelet thresholding procedurewhich uses the estimated variance function and local means of the data to set the thresholds at a suitable level. We demonstrate the mean-square near-optimality of our wavelet esti- mator over the usual range of Besov classes. To achieve this, we establish an exponential inequality for the Nadaraya-Watson variance function esti- mator. We discuss various implementation issues concerning our wavelet esti- mator, and demonstrate its good practical performance.We also show how it leads to a new wavelet-domain data-drivenvariance-stabilising transform. Our estimator can be applied to a variety of problems, including the esti- mation of volatilities, spectral densities and Poisson intensities, as well as to a range of problems in which the distribution of the noise is unknown. Also available for download along with this paper is the R code for implementing the main algorithm of the paper: the data-driven wavelet-Fisz estimator and transform. The code requires the prior installation and loading of the R packages wavethresh, EbayesThresh, lokern (in R, go to Packages -> Install package(s)..., follow the instructions, and then issue the commands library(wavethresh), etc). Please contact the author if you make any modifications or improvements to it or if you have any questions. Also please reference all use of the code. The main routines are: ddhf.est, ddhf.trans, ddhf.trans.inv.

Suggested Citation

  • Fryzlewicz, Piotr, 2008. "Data-driven wavelet-Fisz methodology for nonparametric function estimation," LSE Research Online Documents on Economics 25165, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:25165
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/25165/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    2. Maarten Jansen, 2006. "Multiscale Poisson data smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 27-48, February.
    3. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    4. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
    2. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    2. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    3. Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
    4. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    5. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    6. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    7. repec:jss:jstsof:12:i08 is not listed on IDEAS
    8. Timmermans, Catherine & Fryzlewicz, Piotr, 2012. "Shah: Shape-Adaptive Haar Wavelet Transform For Images With Application To Classification," LIDAM Discussion Papers ISBA 2012015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    10. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    11. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    12. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    13. Capobianco, Enrico, 2004. "Effective decorrelation and space dimensionality reduction of multiscaling volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 340-346.
    14. Seoncheol Park & Hee‐Seok Oh, 2022. "Lifting scheme for streamflow data in river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 467-490, March.
    15. Kim, Kyusoon & Oh, Hee-Seok, 2024. "Network time series forecasting using spectral graph wavelet transform," International Journal of Forecasting, Elsevier, vol. 40(3), pages 971-984.
    16. Young Truong & Prakash Patil, 2001. "Asymptotics for Wavelet Based Estimates of Piecewise Smooth Regression for Stationary Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 159-178, March.
    17. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    18. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Timmermans, Catherine & von Sachs, Rainer, 2013. "BAGIDIS: Statistically investigating curves with sharp local patterns using a new functional measure of dissimilarity," LIDAM Discussion Papers ISBA 2013031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Zhang, Shuanglin & Wong, Man-Yu & Zheng, Zhongguo, 2002. "Wavelet Threshold Estimation of a Regression Function with Random Design," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 256-284, February.
    21. Linyuan Li & Kewei Lu, 2013. "On rate-optimal nonparametric wavelet regression with long memory moving average errors," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 127-145, July.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.