IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/121020.html
   My bibliography  Save this paper

Minimal subharmonic functions and related integral representations

Author

Listed:
  • Cetin, Umut

Abstract

A Choquet-type integral representation result for non-negative subharmonic functions of a one-dimensional regular diffusion is established. The representation allows in particular an integral equation for strictly positive subharmonic functions that is driven by the Revuz measure of the associated continuous additive functional. Moreover, via the aforementioned integral equation, one can construct an Itô-Watanabe pair (g,A) that consist of a subharmonic function g and a continuous additive functional A is with Revuz measure μA such that g(X)exp(−A) is a local martingale. Changes of measures associated with Itô-Watanabe pairs are studied and shown to modify the long term behaviour of the original diffusion process to exhibit transience.

Suggested Citation

  • Cetin, Umut, 2024. "Minimal subharmonic functions and related integral representations," LSE Research Online Documents on Economics 121020, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:121020
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/121020/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Savas Dayanik, 2008. "Optimal Stopping of Linear Diffusions with Random Discounting," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 645-661, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    2. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    3. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    4. Long, Mingsi & Zhang, Hongzhong, 2019. "On the optimality of threshold type strategies in single and recursive optimal stopping under Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2821-2849.
    5. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    6. Ferrari, Giorgio, 2018. "On a Class of Singular Stochastic Control Problems for Reflected Diffusions," Center for Mathematical Economics Working Papers 592, Center for Mathematical Economics, Bielefeld University.
    7. Pui Chan Lon & Mihail Zervos, 2011. "A Model for Optimally Advertising and Launching a Product," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 363-376, May.
    8. Giorgio Ferrari & Tiziano Vargiolu, 2020. "On the singular control of exchange rates," Annals of Operations Research, Springer, vol. 292(2), pages 795-832, September.
    9. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    10. Neofytos Rodosthenous & Hongzhong Zhang, 2017. "Beating the Omega Clock: An Optimal Stopping Problem with Random Time-horizon under Spectrally Negative L\'evy Models," Papers 1706.03724, arXiv.org.
    11. Matthew Lorig & Natchanon Suaysom, 2022. "Optimal times to buy and sell a home," Papers 2203.05545, arXiv.org, revised Mar 2022.
    12. Li, Bo & Palmowski, Zbigniew, 2018. "Fluctuations of Omega-killed spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3273-3299.
    13. Mingsi Long & Hongzhong Zhang, 2017. "On the optimality of threshold type strategies in single and recursive optimal stopping under L\'evy models," Papers 1707.07797, arXiv.org, revised Aug 2018.
    14. Roman Gayduk & Sergey Nadtochiy, 2020. "Control-Stopping Games for Market Microstructure and Beyond," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1289-1317, November.
    15. Savas Dayanik & Semih Sezer, 2012. "Multisource Bayesian sequential binary hypothesis testing problem," Annals of Operations Research, Springer, vol. 201(1), pages 99-130, December.
    16. Roman Gayduk & Sergey Nadtochiy, 2017. "Control-stopping Games for Market Microstructure and Beyond," Papers 1708.00506, arXiv.org, revised Mar 2019.

    More about this item

    Keywords

    one-dimensional diffusions; potential theory; subharmonic functions; integral representation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:121020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.