IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1779.html
   My bibliography  Save this paper

The Generalized Method of Moments in the Bayesian Framework and a Model of Moment Selection Criterion

Author

Listed:
  • Jae-Young Kim

    (SUNY at Albany)

Abstract

While the classical framework has a rich set of limited information procedures such as GMM and other related methods, the situation is not so in the Bayesian framework. We develop a limited information procedure in the Bayesian framework that does not require the knowledge of the likelihood function. The developed procedure is a Bayesian counterpart of the classical GMM but has advantages over the classical GMM in practical applications. The necessary limited information for our approach is a set of moment conditions, instead of the likelihood function, which has a counterpart in the classical GMM. Such moment conditions in the Bayesian framework are obtained from the equivalence condition of the Bayes' estimator and the GMM estimator. From such moment conditions, a posterior probability measure is derived that forms the basis of our limited information Bayesian procedure. This limited information posterior has some desirable properties for small and large sample analyses. An alternative approach is also provided in this paper for deriving a limited information posterior based on a variant of the empirical likelihood method where an empirical likelihood is obtained from the moment conditions of GMM. This alternative approach yields asymptotically the same result as the approach explained above. Based on our limited information method, we develop a procedure for selecting the moment for GMM. This moment selection procedure is an extension of the Bayesian model selection procedure to the Bayesian semi-parametric, limited information framework. It is shown that under some conditions the proposed moment selection procedure is a consistent decision rule.

Suggested Citation

  • Jae-Young Kim, 2000. "The Generalized Method of Moments in the Bayesian Framework and a Model of Moment Selection Criterion," Econometric Society World Congress 2000 Contributed Papers 1779, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1779
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1779.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    3. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mr. Charalambos G Tsangarides, 2004. "A Bayesian Approach to Model Uncertainty," IMF Working Papers 2004/068, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Haan & Hans Maks, 1996. "Stackelberg and Cournot competition under equilibrium limit pricing," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 23(5/6), pages 110-127, December.
    2. Nikolay Gospodinov & Ian Irvine, 2005. "A `long march' perspective on tobacco use in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 38(2), pages 366-393, May.
    3. David De La Croix & Jean-Pierre Urbain, 1998. "Intertemporal substitution in import demand and habit formation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(6), pages 589-612.
    4. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    5. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    6. Aslanidis, Nektarios & Christiansen, Charlotte, 2012. "Smooth transition patterns in the realized stock–bond correlation," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
    7. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    8. David Hirshleifer & Danling Jiang, 2010. "A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3401-3436.
    9. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    10. Joshy Easaw & Roberto Golinelli, 2022. "Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness [“Sectoral and aggregate inflation dynamics in the euro area”]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 701-720.
    11. Scalco, Paulo R. & Braga, Marcelo J., 2015. "Identification of Market Power in Bilateral Oligopoly: The Brazilian Wholesale Market of UHT Milk," 2015 Conference, August 9-14, 2015, Milan, Italy 212278, International Association of Agricultural Economists.
    12. Timo Korkeamaki & Danielle Xu, 2015. "Institutional Investors and Foreign Exchange Risk," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-33, September.
    13. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    14. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    15. repec:ebl:ecbull:v:6:y:2004:i:4:p:1-8 is not listed on IDEAS
    16. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
    17. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    18. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    19. Juan Pineiro Chousa & Haider Ali Khan & Davit N. Melikyan & Artur Tamazian, 2005. "Institutional and Financial Determinants of Development: New Evidence from Advanced and Emerging Markets," CIRJE F-Series CIRJE-F-326, CIRJE, Faculty of Economics, University of Tokyo.
    20. Brian H. Boyer & Taylor D. Nadauld & Keith P. Vorkink & Michael S. Weisbach, 2023. "Discount‐Rate Risk in Private Equity: Evidence from Secondary Market Transactions," Journal of Finance, American Finance Association, vol. 78(2), pages 835-885, April.
    21. Klaus Grobys & James W. Kolari & Jere Rutanen, 2022. "Factor momentum, option-implied volatility scaling, and investor sentiment," Journal of Asset Management, Palgrave Macmillan, vol. 23(2), pages 138-155, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.