IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1377.html
   My bibliography  Save this paper

The Second Fundamental Theorem of Welfare Economics and the Existence of Competitive Equilibrium over an Infinite Horizon with General Consumption Sets

Author

Listed:
  • Kaori Hasegawa

    (Toyo Eiwa University)

Abstract

The purpose of this paper is to prove the second fundamental theorem of welfare economics and the existence of competitive equilibrium in production economies over an infinite horizon with general consumption sets. In the literature of the studies for an economy of infinite dimmentional commodity space, the second fundamental theorem of welfare economics was proved only approximately with uniform properness that is an assumption on consumers' preferences. The existence of competitive equilibrium was also shown under the assumption. However, when we turn to the study of the long run path of the economy, especially of sustainable growth, the assumption that uniformly bounds the rate of substitution among goods is inconsistent with some important preferences of growth theory. We proved the both theorems without uniform properness. The irreducibility of an economy and aggregate adequacy assumption plays the key role. Our model follows Boyd-McKenzie(1993) and generalize their strong irreducibility asuumption on the economy to the usual irreducibility.

Suggested Citation

  • Kaori Hasegawa, 2000. "The Second Fundamental Theorem of Welfare Economics and the Existence of Competitive Equilibrium over an Infinite Horizon with General Consumption Sets," Econometric Society World Congress 2000 Contributed Papers 1377, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1377
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1377.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyd, John H, III & McKenzie, Lionel W, 1993. "The Existence of Competitive Equilibrium over an Infinite Horizon with Production and General Consumption Sets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(1), pages 1-20, February.
    2. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Peleg, Bezalel & Yaari, Menahem E, 1970. "Markets with Countably Many Commodities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(3), pages 369-377, October.
    4. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
    5. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
    6. Aliprantis, C. D. & Burkinshaw, O., 1988. "The fundamental theorems of welfare economics without proper preferences," Journal of Mathematical Economics, Elsevier, vol. 17(1), pages 41-54, February.
    7. Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898, Elsevier.
    8. Burke, Jonathan, 1988. "On the existence of price equilibria in dynamic economies," Journal of Economic Theory, Elsevier, vol. 44(2), pages 281-300, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    2. van der Laan, Gerard & Withagen, Cees, 2003. "Quasi-equilibrium in economies with infinite dimensional commodity spaces: a truncation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 423-444, January.
    3. Gerard van der Laan & Cees Withagen, 2000. "General Equilibrium in Economies with Infinite Dimensional Commodity Spaces: A Truncation Approach," Tinbergen Institute Discussion Papers 00-023/1, Tinbergen Institute.
    4. Aliprantis, Charalambos D. & Border, Kim C. & Burkinshaw, Owen, 1997. "Economies with Many Commodities," Journal of Economic Theory, Elsevier, vol. 74(1), pages 62-105, May.
    5. Monique Florenzano & Valeri Marakulin, 2000. "Production Equilibria in Vector Lattices," Econometric Society World Congress 2000 Contributed Papers 1396, Econometric Society.
    6. Manh-Hung Nguyen & San Nguyen Van, 2005. "The Lagrange multipliers and existence of competitive equilibrium in an intertemporal model with endogenous leisure," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00194723, HAL.
    7. Balasko, Yves, 1997. "Equilibrium analysis of the infinite horizon model with smooth discounted utility functions," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 783-829, May.
    8. Abramovich, Y A & Aliprantis, C D & Zame, W R, 1995. "A Representation Theorem for Riesz Spaces and Its Applications to Economics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 527-535, May.
    9. Aliprantis, Charalambos D., 1997. "Separable utility functions," Journal of Mathematical Economics, Elsevier, vol. 28(4), pages 415-444, November.
    10. Besada, M. & Vazquez, C., 1999. "The generalized marginal rate of substitution," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 553-560, May.
    11. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    12. Durán, Jorge & Le Van, Cuong, 2003. "Simple Proof Of Existence Of Equilibrium In A One-Sector Growth Model With Bounded Or Unbounded Returns From Below," Macroeconomic Dynamics, Cambridge University Press, vol. 7(3), pages 317-332, June.
    13. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    14. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    15. Sun, Ning & Kusumoto, Sho-Ichiro, 1997. "A note on the Boyd-McKenzie theorem," Economics Letters, Elsevier, vol. 55(3), pages 327-332, September.
    16. Marakulin, Valeri M., 1998. "Production equilibria in vector lattices with unordered preferences : an approach using finite-dimensional approximations," CEPREMAP Working Papers (Couverture Orange) 9821, CEPREMAP.
    17. Burke, Jonathan L., 2000. "General Equilibrium When Economic Growth Exceeds Discounting," Journal of Economic Theory, Elsevier, vol. 94(2), pages 141-162, October.
    18. Elvio Accinelli, 1999. "Existence of GE: Are the Cases of Non Existence a Cause of Serious Worry?," Documentos de Trabajo (working papers) 0999, Department of Economics - dECON.
    19. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    20. Aase, Knut K., 2010. "Existence and Uniqueness of Equilibrium in a Reinsurance Syndicate," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 491-517, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.