IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3695.html
   My bibliography  Save this paper

Stable Predictions across Unknown Environments

Author

Listed:
  • Kuang, Kun

    (Tsinghua University)

  • Xiong, Ruoxuan

    (Stanford University)

  • Cui, Peng

    (Tsinghua University)

  • Athey, Susan

    (Stanford University)

  • Li, Bo

    (Tsinghua University)

Abstract

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.

Suggested Citation

  • Kuang, Kun & Xiong, Ruoxuan & Cui, Peng & Athey, Susan & Li, Bo, 2018. "Stable Predictions across Unknown Environments," Research Papers 3695, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3695
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/463421
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhi & Zheng, Xiao-Xue & Li, Deng-Feng & Liao, Chen-Nan & Sheu, Jiuh-Biing, 2021. "A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. Qiang Liu & Yingtao Luo & Shu Wu & Zhen Zhang & Xiangnan Yue & Hong Jin & Liang Wang, 2022. "RMT-Net: Reject-aware Multi-Task Network for Modeling Missing-not-at-random Data in Financial Credit Scoring," Papers 2206.00568, arXiv.org.
    3. Michael Gechter & Keisuke Hirano & Jean Lee & Mahreen Mahmud & Orville Mondal & Jonathan Morduch & Saravana Ravindran & Abu S. Shonchoy, 2024. "Selecting Experimental Sites for External Validity," Papers 2405.13241, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.