RMT-Net: Reject-aware Multi-Task Network for Modeling Missing-not-at-random Data in Financial Credit Scoring
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
- Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich & Sébastien Beben, 2021. "Reject inference methods in credit scoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(13-15), pages 2734-2754, November.
- Banasik, John & Crook, Jonathan, 2007. "Reject inference, augmentation, and sample selection," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1582-1594, December.
- J Banasik & J Crook & L Thomas, 2003. "Sample selection bias in credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 822-832, August.
- A.J. Feelders, 2000. "Credit scoring and reject inference with mixture models," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(1), pages 1-8, March.
- Thomas B. Astebro & G. Chen, 2001. "The Economic Value of Reject Inference in Credit Scoring," Post-Print hal-00654597, HAL.
- Kuang, Kun & Xiong, Ruoxuan & Cui, Peng & Athey, Susan & Li, Bo, 2018. "Stable Predictions across Unknown Environments," Research Papers 3695, Stanford University, Graduate School of Business.
- Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Sep 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rogelio A. Mancisidor & Michael Kampffmeyer & Kjersti Aas & Robert Jenssen, 2019. "Deep Generative Models for Reject Inference in Credit Scoring," Papers 1904.11376, arXiv.org, revised Sep 2021.
- Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
- Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.
- Mengnan Song & Jiasong Wang & Suisui Su, 2022. "Towards a Better Microcredit Decision," Papers 2209.07574, arXiv.org.
- Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
- Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
- Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
- J Banasik & J Crook, 2010. "Reject inference in survival analysis by augmentation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 473-485, March.
- Dong-Her Shih & Ting-Wei Wu & Po-Yuan Shih & Nai-An Lu & Ming-Hung Shih, 2022. "A Framework of Global Credit-Scoring Modeling Using Outlier Detection and Machine Learning in a P2P Lending Platform," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
- Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
- Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
- Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich & S'ebastien Beben, 2019. "R\'eint\'egration des refus\'es en Credit Scoring," Papers 1903.10855, arXiv.org.
- Andreeva, Galina & Calabrese, Raffaella & Osmetti, Silvia Angela, 2016.
"A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models,"
European Journal of Operational Research, Elsevier, vol. 249(2), pages 506-516.
- Galina Andreeva & Raffaella Calabrese & Silvia Angela Osmetti, 2014. "A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models," Papers 1412.5351, arXiv.org.
- Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
- Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
- Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
- Karol Przanowski, 2014. "Credit acceptance process strategy case studies - the power of Credit Scoring," Papers 1403.6531, arXiv.org.
- Nikita Kozodoi & Panagiotis Katsas & Stefan Lessmann & Luis Moreira-Matias & Konstantinos Papakonstantinou, 2019. "Shallow Self-Learning for Reject Inference in Credit Scoring," Papers 1909.06108, arXiv.org.
- Rafael Weißbach & Dominik Wied, 2022. "Truncating the exponential with a uniform distribution," Statistical Papers, Springer, vol. 63(4), pages 1247-1270, August.
- Y Kim & S Y Sohn, 2007. "Technology scoring model considering rejected applicants and effect of reject inference," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1341-1347, October.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2022-07-18 (Banking)
- NEP-BIG-2022-07-18 (Big Data)
- NEP-DEM-2022-07-18 (Demographic Economics)
- NEP-ECM-2022-07-18 (Econometrics)
- NEP-RMG-2022-07-18 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.00568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.