IDEAS home Printed from https://ideas.repec.org/p/ecl/riceco/19-002.html
   My bibliography  Save this paper

Estimation of Industry-level Productivity with Cross-sectional Dependence by Using Spatial Analysis

Author

Listed:
  • Han, Jaepil

    (Korea Development Institute)

  • Sickles, Robin C.

    (Rice U)

Abstract

We examine aggregate productivity in the presence of inter-sectoral linkages. Cross-sectional dependence is inevitable among industries, in which each sector serves as a supplier to the other sectors. However, the chains of such interconnections cause indirect relationship among industries. Spatial analysis is one of the approaches to address cross-sectional dependence by using a priori a specified spatial weights matrix. We exploit the linkage patterns from the input-output tables and use them to assign spatial weights to describe the economic interdependencies. By using the spatial weights matrix, we can estimate the industry-level production functions and productivity of the U.S. from 1947 to 2010. Cross-sectional dependencies are the consequences of indirect effects, and they reflect the interactions among industries linked via their supply chain networks result in larger output elasticities as well as scale effects for the networked production processes. However, productivity growth estimates are reportedly comparable across various spatial and non-spatial model specications.

Suggested Citation

  • Han, Jaepil & Sickles, Robin C., 2019. "Estimation of Industry-level Productivity with Cross-sectional Dependence by Using Spatial Analysis," Working Papers 19-002, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:19-002
    as

    Download full text from publisher

    File URL: https://economics.rice.edu/file/3916/download?token=_7l9zJvG
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonis, Michael & Hewings, Geoffrey,J.D., 1999. "Economic Landscapes: Multiplier Product Matrix Analysis for Multiregional Input-outoput Systems," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 40(1), pages 59-74, June.
    2. D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(3), pages 249-283.
    3. Kristian Behrens & Cem Ertur & Wilfried Koch, 2012. "‘Dual’ Gravity: Using Spatial Econometrics To Control For Multilateral Resistance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 773-794, August.
    4. Cem Ertur & Wilfried Koch, 2007. "Growth, technological interdependence and spatial externalities: theory and evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1033-1062.
    5. Diewert, W Erwin, 1978. "Superlative Index Numbers and Consistency in Aggregation," Econometrica, Econometric Society, vol. 46(4), pages 883-900, July.
    6. Zvi Griliches, 1960. "Estimates of the Aggregate U.S. Farm Supply Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 42(2), pages 282-293.
    7. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    8. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    9. Charles R. Hulten & Edwin R. Dean & Michael J. Harper, 2001. "New Developments in Productivity Analysis," NBER Books, National Bureau of Economic Research, Inc, number hult01-1.
    10. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    11. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    12. Jaepil Han & Deockhyun Ryu & Robin Sickles, 2016. "How to Measure Spillover Effects of Public Capital Stock: A Spatial Autoregressive Stochastic Frontier Model," Advances in Econometrics, in: Spatial Econometrics: Qualitative and Limited Dependent Variables, volume 37, pages 259-294, Emerald Group Publishing Limited.
    13. Anthony J. Glass & Karligash Kenjegalieva & Robin C. Sickles, 2016. "Returns to scale and curvature in the presence of spillovers: evidence from European countries," Oxford Economic Papers, Oxford University Press, vol. 68(1), pages 40-63.
    14. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C., 2016. "A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers," Journal of Econometrics, Elsevier, vol. 190(2), pages 289-300.
    15. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    16. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    17. Marcel P. Timmer & Abdul Azeez Erumban & Bart Los & Robert Stehrer & Gaaitzen J. de Vries, 2014. "Slicing Up Global Value Chains," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 99-118, Spring.
    18. Charles R. Hulten, 2001. "Total Factor Productivity: A Short Biography," NBER Chapters, in: New Developments in Productivity Analysis, pages 1-54, National Bureau of Economic Research, Inc.
    19. Glass, Anthony & Kenjegalieva, Karligash & Paez-Farrell, Juan, 2013. "Productivity growth decomposition using a spatial autoregressive frontier model," Economics Letters, Elsevier, vol. 119(3), pages 291-295.
    20. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    21. Daniel P. McMillen, 2003. "Identifying Sub-centres Using Contiguity Matrices," Urban Studies, Urban Studies Journal Limited, vol. 40(1), pages 57-69, January.
    22. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    2. Orea, Luis & Álvarez, Inmaculada C., 2019. "Spatial Production Economics," Efficiency Series Papers 2019/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    4. Glass, Anthony J. & Kenjegalieva, Karligash, 2019. "A spatial productivity index in the presence of efficiency spillovers: Evidence for U.S. banks, 1992–2015," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1165-1179.
    5. Bao Hoang Nguyen & Zhichao Wang & Valentin Zelenyuk, 2023. "Efficiency of Queensland Public Hospitals via Spatial Panel Stochastic Frontier Models," CEPA Working Papers Series WP102023, School of Economics, University of Queensland, Australia.
    6. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2023. "Regional Productivity Network in the EU," CESifo Working Paper Series 10404, CESifo.
    7. Dale Squires & Kathleen Segerson, 2022. "Capacity and Capacity Utilization in Production Economics," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 24, pages 1001-1037, Springer.
    8. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2020. "A spatial stochastic frontier model with endogenous frontier and environmental variables," European Journal of Operational Research, Elsevier, vol. 286(1), pages 389-399.
    9. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    10. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.
    11. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    12. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C., 2016. "A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers," Journal of Econometrics, Elsevier, vol. 190(2), pages 289-300.
    13. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2016. "The Spatial Efficiency Multiplier and Random Effects in Spatial Stochastic Frontier Models," Working Papers 16-002, Rice University, Department of Economics.
    14. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    15. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
    16. Jyotsna Rosario & K.R. Shanmugam, 2024. "Elementary Education Outcome Efficiency of Indian States: A Ray Frontier Approach," Working Papers 2024-264, Madras School of Economics,Chennai,India.
    17. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    18. Vidoli, Francesco & Cardillo, Concetta & Fusco, Elisa & Canello, Jacopo, 2016. "Spatial nonstationarity in the stochastic frontier model: An application to the Italian wine industry," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 153-164.
    19. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    20. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:19-002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dericus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.