IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-174930.html
   My bibliography  Save this paper

QuantifQuantile; an R Package for Performing Quantile Regression through Optimal Quantization

Author

Listed:
  • Isabelle Charlier
  • Davy Paindaveine
  • Jérôme Saracco

Abstract

Quantile regression allows to assess the impact of some covariate X on a response Y .An important application is the construction of reference curves and conditional predictionintervals for Y .Recently, Charlier et al. (2014a) developed a new nonparametric quantileregression method based on the concept of optimal quantization. This method, as shownin Charlier et al. (2014b), competes very well with its classical nearest-neighbor or kernelcompetitors. In this paper, we describe an R package, called QuantifQuantile, that allowsto perform quantization-based quantile regression. We describe the various functions of thepackage and provide examples.

Suggested Citation

  • Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2014. "QuantifQuantile; an R Package for Performing Quantile Regression through Optimal Quantization," Working Papers ECARES ECARES 2014-40, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/174930
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/174930/1/2014-40-CHARLIER_PAINDAVEINE_SARACCO-quantifquantile.pdf
    File Function: 2014-40-CHARLIER_PAINDAVEINE_SARACCO-quantifquantile
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isabelle Charlier & Davy Paindaveine, 2014. "Conditional Quantile Estimation through Optimal Quantization," Working Papers ECARES ECARES 2014-28, ULB -- Universite Libre de Bruxelles.
    2. Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2014. "Conditional Quantile Estimation Based on Optimal Quantization: from Theory to Practice," Working Papers ECARES ECARES 2014-39, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2016. "Multiple-Output Quantile Regression through Optimal Quantization," Working Papers ECARES ECARES 2016-18, ULB -- Universite Libre de Bruxelles.
    2. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    3. Isabelle Charlier & Davy Paindaveine & Jérôme Saracco, 2014. "Conditional Quantile Estimation Based on Optimal Quantization: from Theory to Practice," Working Papers ECARES ECARES 2014-39, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/174930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.