IDEAS home Printed from https://ideas.repec.org/p/duk/dukeec/02-18.html
   My bibliography  Save this paper

The Impact of Jumps in Volatility and Returns

Author

Listed:
  • Eraker, Bjorn
  • Johannes, Michael
  • Polson, Nicholas

Abstract

This paper examines a class of continuous-time models incorporating jumps in returns and volatility, in addition to diffusive stochastic volatility. We develop a likelihood-based estimation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using both S&P 500 and Nasdaq 100 index returns. Estimates of jump times, jump sizes and volatility are particularly useful for disentangling the dynamic effects of these factors during periods of market stress, such as those in 1987, 1997 and 1998. Using both formal and informal diagnostics, we find strong evidence for jumps in volatility, even after accounting for jumps in returns. We study the impact of these factors and of estimation risk on option prices.

Suggested Citation

  • Eraker, Bjorn & Johannes, Michael & Polson, Nicholas, 2002. "The Impact of Jumps in Volatility and Returns," Working Papers 02-18, Duke University, Department of Economics.
  • Handle: RePEc:duk:dukeec:02-18
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/Papers/Abstracts02/abstract.02.18.html
    File Function: main text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemin Yan, 2002. "Valuation of commodity derivatives in a new multi-factor model," Review of Derivatives Research, Springer, vol. 5(3), pages 251-271, October.
    2. Gerlach, Richard & Tuyl, Frank, 2006. "MCMC methods for comparing stochastic volatility and GARCH models," International Journal of Forecasting, Elsevier, vol. 22(1), pages 91-107.
    3. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    4. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    5. Xibin Zhang & Maxwell L. King, 2002. "Influence Diagnostics in GARCH Processes," Monash Econometrics and Business Statistics Working Papers 19/02, Monash University, Department of Econometrics and Business Statistics.
    6. Maciej Augustyniak & Alexandru Badescu & Mathieu Boudreault, 2023. "On the Measurement of Hedging Effectiveness for Long-Term Investment Guarantees," JRFM, MDPI, vol. 16(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:02-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Department of Economics Webmaster (email available below). General contact details of provider: http://econ.duke.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.