IDEAS home Printed from https://ideas.repec.org/p/dra/wpaper/201305.html
   My bibliography  Save this paper

The Danish Microsimulation Model SMILE – An overview

Author

Abstract

The SMILE model is a Danish, dynamic, data-driven microsimulation model. The current version forecasts demography, education level, socioeconomic characteristics and housing demand for the period 2010-2050. The basic idea with SMILE is to unite the pre-models that the Danish institution DREAM already uses in a full dynamic microsimulation model. The new elements of the model are described and the development strategy is outlined. The model is based on a new Event Pump architecture. This is a Lego-block-like object oriented technique where the model is built as an Agent Tree consisting of Agent objects. The model take extensive use of a method called CTREE, which is a decision tree technique that has not previously been used for microsimulation modelling. Finally, a matching algorithm called SBAM (Sparse Biproportionate Adjustment Matching) has been developed.

Suggested Citation

  • Peter Stephensen, 2013. "The Danish Microsimulation Model SMILE – An overview," DREAM Working Paper Series 201305, Danish Rational Economic Agents Model, DREAM.
  • Handle: RePEc:dra:wpaper:201305
    Note: Conference paper for the 4th General Conference of the International Microsimulation Association
    as

    Download full text from publisher

    File URL: http://www.dreammodel.dk/SMILE/N2013_01.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas Zangenberg Hansen & Peter Stephensen & Joachim Borg Kristensen, 2013. "Household Formation and Housing Demand Forecasts - Summary," DREAM Working Paper Series 201307, Danish Rational Economic Agents Model, DREAM.
    2. Peter Stephensen, 2012. "SBAM: An Algorithm for Pair Matching," DREAM Working Paper Series 201201, Danish Rational Economic Agents Model, DREAM.
    3. Jonas Zangenberg Hansen & Peter Stephensen & Joachim Borg Kristensen, 2013. "Household Formation and Housing Demand Forecasts," DREAM Working Paper Series 201308, Danish Rational Economic Agents Model, DREAM.
    4. Jonas Zangenberg Hansen & Peter Stephensen, 2013. "Modeling Household Formation and Housing Demand in Denmark using the Dynamic Microsimulation Model SMILE," DREAM Working Paper Series 201304, Danish Rational Economic Agents Model, DREAM.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cathal O'Donoghue & Gijs Dekkers, 2018. "Increasing the Impact of Dynamic Microsimulation Modelling," International Journal of Microsimulation, International Microsimulation Association, vol. 11(1), pages 61-96.
    2. Jonas Zangenberg Hansen & Peter Stephensen & Joachim Borg Kristensen, 2013. "Household Formation and Housing Demand Forecasts," DREAM Working Paper Series 201308, Danish Rational Economic Agents Model, DREAM.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Zangenberg Hansen & Peter Stephensen & Joachim Borg Kristensen, 2013. "Household Formation and Housing Demand Forecasts," DREAM Working Paper Series 201308, Danish Rational Economic Agents Model, DREAM.
    2. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    5. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    6. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    7. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    8. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    9. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    10. Gong, Guan & Webb, Anthony, 2010. "Evaluating the Advanced Life Deferred Annuity -- An annuity people might actually buy," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 210-221, February.
    11. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    13. Carter, Lawrence R., 1998. "Combining probabilistic and subjective assessments of error to provide realistic appraisals of demographic forecast uncertainty: Alho's approach," International Journal of Forecasting, Elsevier, vol. 14(4), pages 523-526, December.
    14. Geert Zittersteyn & Jennifer Alonso-García, 2021. "Common Factor Cause-Specific Mortality Model," Risks, MDPI, vol. 9(12), pages 1-30, December.
    15. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    16. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    17. Kogure Atsuyuki & Fushimi Takahiro, 2018. "A Bayesian Pricing of Longevity Derivatives with Interest Rate Risks," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(1), pages 1-30, January.
    18. Bucciol, Alessandro & Cavalli, Laura & Fedotenkov, Igor & Pertile, Paolo & Polin, Veronica & Sartor, Nicola & Sommacal, Alessandro, 2017. "A large scale OLG model for the analysis of the redistributive effects of policy reforms," European Journal of Political Economy, Elsevier, vol. 48(C), pages 104-127.
    19. Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
    20. Frank T. Denton & Byron G. Spencer, 2011. "A Dynamic Extension of the Period Life Table," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(34), pages 831-854.

    More about this item

    Keywords

    population projections; education; household projections; housing demand; microsimulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dra:wpaper:201305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Stephensen (email available below). General contact details of provider: https://edirc.repec.org/data/dreamdk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.