IDEAS home Printed from https://ideas.repec.org/p/dor/wpaper/7.html
   My bibliography  Save this paper

OLS-based estimation of the disturbance variance under spatial autocorrelation

Author

Listed:
  • Prof. Dr. Walter Krämer

    (Faculty of Statistics, Dortmund University of Technology)

  • Dr. Christoph Hanck

    (Department of Quantitative Economics, Universiteit Maastricht)

Abstract

We investigate the OLS-based estimator s2 of the disturbance variance in the standard linear regression model with cross section data when the disturbances are homoskedastic, but spatially correlated. For the most popular model of spatially autoregressive disturbances, we show that s2 can be severely biased in finite samples, but is asymptotically unbiased and consistent for most types of spatial weighting matrices as sample size increases.

Suggested Citation

  • Prof. Dr. Walter Krämer & Dr. Christoph Hanck, "undated". "OLS-based estimation of the disturbance variance under spatial autocorrelation," Working Papers 7, Business and Social Statistics Department, Technische Universität Dortmund, revised Oct 2006.
  • Handle: RePEc:dor:wpaper:7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Kiviet, Jan F & Kramer, Walter, 1992. "Bias of SDE 2 in the Linear Regression Model with Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 362-365, May.
    3. Luc Anselin & Raymond J. G. M. Florax, 1995. "Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 2, pages 21-74, Springer.
    4. Kelejian, Harry H. & Prucha, Ingmar R., 2002. "2SLS and OLS in a spatial autoregressive model with equal spatial weights," Regional Science and Urban Economics, Elsevier, vol. 32(6), pages 691-707, November.
    5. Case, Anne, 1992. "Neighborhood influence and technological change," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 491-508, September.
    6. Kramer, Walter & Berghoff, Sonja, 1991. "Consistency of sDE 2 in the Linear Regression Model with Correlated Errors," Empirical Economics, Springer, vol. 16(3), pages 375-377.
    7. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    8. Sathe, S T & Vinod, H D, 1974. "Bounds on the Variance of Regression Coefficients Due to Heteroscedastic or Autoregressive Errors," Econometrica, Econometric Society, vol. 42(2), pages 333-340, March.
    9. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2006. "Estimation Problems In Models With Spatial Weighting Matrices Which Have Blocks Of Equal Elements," Journal of Regional Science, Wiley Blackwell, vol. 46(3), pages 507-515, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    2. Hanck, Christoph & Krämer, Walter, 2011. "The exact bias of s2 in linear panel regressions with spatial autocorrelation," Economics Letters, Elsevier, vol. 110(1), pages 67-70, January.
    3. Song, Seuck Heun & Lee, Jaejun, 2008. "A note on S2 in a spatially correlated error components regression model for panel data," Economics Letters, Elsevier, vol. 101(1), pages 41-43, October.
    4. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    5. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    6. Baltagi, Badi H. & Liu, Long, 2010. "Spurious spatial regression with equal weights," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1640-1642, November.
    7. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    8. Baltagi, Badi H. & Liu, Long, 2009. "Spatial lag test with equal weights," Economics Letters, Elsevier, vol. 104(2), pages 81-82, August.
    9. Egger, Peter & Larch, Mario & Pfaffermayr, Michael & Walde, Janette, 2009. "Small sample properties of maximum likelihood versus generalized method of moments based tests for spatially autocorrelated errors," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 670-678, November.
    10. repec:esx:essedp:735 is not listed on IDEAS
    11. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    12. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    13. Fang, Ying & Park, Sung Y. & Zhang, Jinfeng, 2014. "A simple spatial dependence test robust to local and distributional misspecifications," Economics Letters, Elsevier, vol. 124(2), pages 203-206.
    14. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    15. repec:asg:wpaper:1045 is not listed on IDEAS
    16. repec:esx:essedp:772 is not listed on IDEAS
    17. Kuersteiner, Guido M. & Prucha, Ingmar R. & Zeng, Ying, 2023. "Efficient peer effects estimators with group effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 2155-2194.
    18. Zhenlin Yang, 2006. "On Joint Modelling and Testing for Local and Global Spatial Externalities," Working Papers 25-2006, Singapore Management University, School of Economics.
    19. Zhengyu Zhang & Pingfang Zhu, 2010. "A More Efficient Best Spatial Three-stage Least Squares Estimator for Spatial Autoregressive Models," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 155-184, May.
    20. Zhou, Bin (Brenda) & Kockelman, Kara M., 2009. "Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes," Journal of Transport Geography, Elsevier, vol. 17(5), pages 369-376.
    21. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    22. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    23. repec:asg:wpaper:1013 is not listed on IDEAS
    24. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.

    More about this item

    Keywords

    regression; spatial error correlation; bias; variance;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dor:wpaper:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Prof. Dr. Walter Krämer (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.