IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1831.html
   My bibliography  Save this paper

Proxy VAR Models in a Data-Rich Environment

Author

Listed:
  • Martin Bruns

Abstract

Structural VAR models require two ingredients: (i) Informational sufficiency, and (ii) a valid identification strategy. These conditions are unlikely to be met by small-scale recursively identified VAR models. I propose a Bayesian Proxy Factor-Augmented VAR (BP-FAVAR) to combine a large information set with an identification scheme based on an external instrument. In an application to monetary policy shocks I find that augmenting a standard small-scale Proxy VAR by factors from a large set of financial variables changes the model dynamics and delivers price responses which are more in line with economic theory. A second application shows that an exogenous increase in uncertainty affects disaggregated investment series more negatively than consumption series.

Suggested Citation

  • Martin Bruns, 2019. "Proxy VAR Models in a Data-Rich Environment," Discussion Papers of DIW Berlin 1831, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1831
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.698719.de/dp1831.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    2. Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    5. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    6. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    7. Thorsten Drautzburg, 2020. "A narrative approach to a fiscal DSGE model," Quantitative Economics, Econometric Society, vol. 11(2), pages 801-837, May.
    8. Belviso Francesco & Milani Fabio, 2006. "Structural Factor-Augmented VARs (SFAVARs) and the Effects of Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 6(3), pages 1-46, December.
    9. Florian Huber & Manfred M. Fischer, 2018. "A Markov Switching Factor‐Augmented VAR Model for Analyzing US Business Cycles and Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 575-604, June.
    10. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, January.
    11. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    12. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    13. Andrea Carriero & Haroon Mumtaz & Konstantinos Theodoridis & Angeliki Theophilopoulou, 2015. "The Impact of Uncertainty Shocks under Measurement Error: A Proxy SVAR Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(6), pages 1223-1238, September.
    14. Leduc, Sylvain & Liu, Zheng, 2016. "Uncertainty shocks are aggregate demand shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 20-35.
    15. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    16. Pooyan Amir Ahmadi & Harald Uhlig, 2015. "Sign Restrictions in Bayesian FaVARs with an Application to Monetary Policy Shocks," NBER Working Papers 21738, National Bureau of Economic Research, Inc.
    17. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    18. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    19. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2018. "Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications," Econometrica, Econometric Society, vol. 86(2), pages 685-720, March.
    20. Dario Caldara & Edward Herbst, 2019. "Monetary Policy, Real Activity, and Credit Spreads: Evidence from Bayesian Proxy SVARs," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(1), pages 157-192, January.
    21. Mark Kerssenfischer, 2019. "The puzzling effects of monetary policy in VARs: Invalid identification or missing information?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 18-25, January.
    22. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    2. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    3. Bruns, Martin, 2021. "Proxy Vector Autoregressions in a Data-rich Environment," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    4. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.
    5. Laumer, Sebastian & Violaris, Andreas-Entony, 2024. "Unconventional monetary policy and policy foresight," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    6. Robin Braun & Ralf Brüggemann, 2020. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2020-01, Department of Economics, University of Konstanz.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Mirela S. Miescu & Haroon Mumtaz, 2019. "Proxy structural vector autoregressions, informational sufficiency and the role of monetary policy," Working Papers 894, Queen Mary University of London, School of Economics and Finance.
    10. Giovanni Angelini & Luca Fanelli, 2019. "Exogenous uncertainty and the identification of structural vector autoregressions with external instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 951-971, September.
    11. G. Angelini & L. Fanelli, 2018. "Identification and estimation issues in Structural Vector Autoregressions with external instruments," Working Papers wp1122, Dipartimento Scienze Economiche, Universita' di Bologna.
    12. Danilo Cascaldi-Garcia, 2022. "Forecast Revisions as Instruments for News Shocks," International Finance Discussion Papers 1341, Board of Governors of the Federal Reserve System (U.S.).
    13. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    14. Ferreira, Leonardo N., 2022. "Forward guidance matters: Disentangling monetary policy shocks," Journal of Macroeconomics, Elsevier, vol. 73(C).
    15. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," University of Göttingen Working Papers in Economics 404, University of Goettingen, Department of Economics.
    16. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    17. Stefan Schiman-Vukan & Harald Badinger, 2020. "Measuring Monetary Policy with Residual Sign Restrictions at Known Shock Dates," WIFO Working Papers 608, WIFO.
    18. Georgiadis, Georgios & Müller, Gernot J. & Schumann, Ben, 2024. "Global risk and the dollar," Journal of Monetary Economics, Elsevier, vol. 144(C).
    19. Giorgia De Nora, 2021. "Factor Augmented Vector-Autoregression with narrative identification. An application to monetary policy in the US," Working Papers 934, Queen Mary University of London, School of Economics and Finance.
    20. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.

    More about this item

    Keywords

    Dynamic factor models; external instruments; monetary policy; uncertainty shocks;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.