IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1786.html
   My bibliography  Save this paper

Makroökonomie: Blind Spot Gender: Erweiterung makroökonomischer Indikatoren durch eine Gender-Komponente am Beispiel der empirischen Phillips-Kurve

Author

Listed:
  • Elke Holst
  • Denise Barth

Abstract

Dieser Beitrag möchte einen Impuls zur stärkeren Berücksichtigung von Genderaspekten in makroökonomischen Modellen geben. Am Beispiel der Philipps-Kurve geht es um die Frage, ob sich das Erwerbsverhalten von Frauen und Männern so stark voneinander unterscheidet, dass sich dies im Verlauf des Zusammenhangs von Inflation und Arbeitslosigkeit niederschlägt. Erste Hinweise dafür werden in deskriptiven Analysen für die Beobachtungszeiträume 1971 bis 1990 und 1991 bis 2017 gefunden. Die Studie bezieht sich auf die klassische Phillips-Kurve, die den empirischen Zusammenhang zwischen Inflation und Arbeitslosigkeit untersucht. Von einer Modellierung nach neukeynesianschem Vorbild wird zunächst abgesehen. Die Phillips-Kurve büßte in dieser Zeit erheblich an Erklärungskraft ein. Aus dem teilweise gegensätzlichen Verlauf der Philipps-Kurve unter Verwendung geschlechterspezifischer Erwerbslosenquoten wird abgeleitet, dass sich diese Entwicklung im Zuge der stark gestiegenen Erwerbsbeteiligung von Frauen noch beschleunigt hat. Die geschlechterspezifischen Unterschiede im Verlauf der Philipps-Kurve werden besonders deutlich unter Verwendung der von konjunkturellen Schwankungen weitgehend befreiten Erwerbslosenquote. Dies wird als Indiz für strukturelle Unterschiede im Erwerbsverhalten von Frauen und Männern gewertet. Das Ergebnis stärkt damit die Argumentation nach einer stärkeren Berücksichtigung von Genderaspekten in makroökonomischen Modellen. Weitere Forschungsarbeiten sind notwendig, um Aussagen über kausale Zusammenhänge treffen zu können.

Suggested Citation

  • Elke Holst & Denise Barth, 2019. "Makroökonomie: Blind Spot Gender: Erweiterung makroökonomischer Indikatoren durch eine Gender-Komponente am Beispiel der empirischen Phillips-Kurve," Discussion Papers of DIW Berlin 1786, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1786
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.620455.de/dp1786.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustav Horn & Camille Logeay & Silke Tober, 2007. "Methodische Fragen mittelfristiger gesamtwirtschaftlicher Projektionen am Beispiel des Produktionspotenzials," IMK Studies 01-2007, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    2. Robert J. Gordon, 2011. "The History of the Phillips Curve: Consensus and Bifurcation," Economica, London School of Economics and Political Science, vol. 78(309), pages 10-50, January.
    3. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konon, Alexander & Fritsch, Michael & Kritikos, Alexander S., 2018. "Business cycles and start-ups across industries: An empirical analysis of German regions," Journal of Business Venturing, Elsevier, vol. 33(6), pages 742-761.
    2. Eleanor Jawon Choi & Jaewoo Choi & Hyelim Son, 2019. "The Long-Term Effects of Labor Market Entry in a Recession: Evidence from the Asian Financial Crisis," Upjohn Working Papers 19-312, W.E. Upjohn Institute for Employment Research.
    3. Storesletten, Kjetil & Zhao, Bo & Zilibotti, Fabrizio, 2020. "Business Cycle during Structural Change: Arthur Lewis’ Theory from a Neoclassical Perspective," CEPR Discussion Papers 14964, C.E.P.R. Discussion Papers.
    4. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    5. repec:got:cegedp:84 is not listed on IDEAS
    6. Grintzalis, Ioannis & Lodge, David & Manu, Ana-Simona, 2017. "The implications of global and domestic credit cycles for emerging market economies: measures of finance-adjusted output gaps," Working Paper Series 2034, European Central Bank.
    7. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    8. Mayu Kikuchi & Alfred Wong & Jiayue Zhang, 2019. "Risk of window dressing: quarter-end spikes in the Japanese yen Libor-OIS spread," Journal of Regulatory Economics, Springer, vol. 56(2), pages 149-166, December.
    9. van den Berg, Gerard J. & Gerdtham, Ulf-G. & von Hinke, Stephanie & Lindeboom, Maarten & Lissdaniels, Johannes & Sundquist, Jan & Sundquist, Kristina, 2017. "Mortality and the business cycle: Evidence from individual and aggregated data," Journal of Health Economics, Elsevier, vol. 56(C), pages 61-70.
    10. Furceri, Davide & Mourougane, Annabelle, 2012. "The effect of financial crises on potential output: New empirical evidence from OECD countries," Journal of Macroeconomics, Elsevier, vol. 34(3), pages 822-832.
    11. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    12. Pierre ALDAMA & Jérôme Creel, 2017. "Fiscal policy in the US : Ricardian after all ?," Documents de Travail de l'OFCE 2017-23, Observatoire Francais des Conjonctures Economiques (OFCE).
    13. Nora Prean & Karin Mayr, 2012. "Unemployment of immigrants and natives over the business cycle: evidence from the Austrian labor market," Norface Discussion Paper Series 2012019, Norface Research Programme on Migration, Department of Economics, University College London.
    14. Sterk, Vincent, 2016. "The dark corners of the labor market," LSE Research Online Documents on Economics 86244, London School of Economics and Political Science, LSE Library.
    15. Jacobs, Jan & Tassenaar, Vincent, 2004. "Height, income, and nutrition in the Netherlands: the second half of the 19th century," Economics & Human Biology, Elsevier, vol. 2(2), pages 181-195, June.
    16. Facundo Piguillem & Anderson Schneider, 2013. "Heterogeneous Labor Skills, The Median Voter and Labor Taxes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(2), pages 332-349, April.
    17. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    18. Krishna, Pravin & Levchenko, Andrei A., 2013. "Comparative advantage, complexity, and volatility," Journal of Economic Behavior & Organization, Elsevier, vol. 94(C), pages 314-329.
    19. Haroon Mumtaz & Saverio Simonelli & Paolo Surico, 2011. "International Comovements, Business Cycle and Inflation: a Historical Perspective," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 176-198, January.
    20. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    21. Bruce N. Lehmann & David M. Modest, 1985. "The Empirical Foundations of the Arbitrage Pricing Theory I: The Empirical Tests," NBER Working Papers 1725, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Macroeconomics; Phillips-Curve; Gender; Unemployment; Inflation;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • J16 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Gender; Non-labor Discrimination

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.