IDEAS home Printed from https://ideas.repec.org/p/diw/diwsop/diw_sp1125.html
   My bibliography  Save this paper

Auswirkungen von Referenzzeiträumen auf die Selbstangaben zum freiwilligen Engagement: Ergebnisse einer experimentellen Studie

Author

Listed:
  • Nadiya Kelle
  • Luise Burkhardt
  • Corinna Kausmann
  • Julia Simonson
  • Jürgen Schupp
  • Clemens Tesch-Römer

Abstract

This study examines to which extent the use of a specific time frame affects self-reports on volunteering. We apply an experimental approach within the scope of the SOEP Innovation Sample (SOEP-IS) 2018. We use a split-ballot design and divide the SOEP-IS sample into two randomized subsamples with one subsample receiving questions on volunteering with a time frame of twelve months and the other subsample receiving identical questions without the time frame specification. The questions on volunteering are taken from two established surveys, the German Survey on Volunteering (FWS) and the Socio-Economic Panel (SOEP). We expect the use of the twelve-months time frame to increase the likelihood of respondents to indicate a voluntary engagement. At the same time, we expect this effect to depend on the survey question: Since the SOEP survey question records frequencies of volunteering (at least once a week, at least once a month, more rarely or never) and the FWS survey question does not, we expect the impact of the time frame to be more pronounced in the context of the FWS than of the SOEP question. Our findings indicate that the use of the twelve-months time frame is indeed associated with increased self-reports but only in the context of the FWS and not the SOEP question. To conclude, it is crucial to reflect on and to optimize survey questions; yet, adding a time frame may have an effect on respondents’ self-reports. In der vorliegenden Studie wird untersucht, inwiefern sich der Einsatz eines spezifischen Zeitfensters bei Survey-Abfragen zum ehrenamtlichen und freiwilligen Engagement – im Vergleich zu Survey-Abfragen mit unspezifischen Zeitfenstern – auf die Selbstangaben von Befragten auswirkt. Die Grundlage der Untersuchung bildet ein Experiment, welches zu diesem Zweck im Rahmen des SOEP-Innovationssamples (SOEP-IS) 2018 durchgeführt wurde. Unter Anwendung eines Split-Ballot Designs wurde die Stichprobe des SOEP-IS in zwei randomisierte Teilstichproben unterteilt. Eine Gruppe von Befragten erhielt Fragen zum Engagement mit einem spezifischen Zeitfenster von zwölf Monaten, eine andere Gruppe erhielt diese Fragen zum Engagement ohne ein solches spezifisches Zeitfenster. Die Fragen zum Engagement stammen aus zwei etablierten Umfragestudien in Deutschland, dem Deutschen Freiwilligensurvey (FWS) 2014 und Sozio-oekonomischen Panel (SOEP) 2017. Es wird erwartet, dass die Einführung eines Zwölf-Monats-Zeitfensters die Wahrscheinlichkeit dafür erhöht, dass Befragte ein Engagement angeben. Da in der SOEP-Abfrage Häufigkeiten des Engagements erfasst werden (jede Woche, jeden Monat, seltener oder nie), die einen zeitlichen Bezug vorgeben, wird erwartet, dass der Effekt der Einführung eines Zwölf-Monats-Zeitfensters in der FWS-Abfrage stärker als in der SOEP-Abfrage ausfällt. Diese Annahmen werden bestätigt. Im FWS führte die Einführung eines Zwölf-Monats-Zeitfensters für die Engagementabfrage zu einem statistisch signifikanten durchschnittlichen Marginaleffekt (AME) von etwas über drei Prozentpunkten. Für die Engagementabfrage aus dem SOEP zeigt sich dieser Effekt nicht. Insgesamt lässt sich festhalten, dass es sich lohnt, Frageformulierungen zu reflektieren und zu optimieren. Dabei sollten mögliche Auswirkungen bedacht werden, die diese Änderungen auf das Antwortverhalten der Befragten haben könnten.

Suggested Citation

  • Nadiya Kelle & Luise Burkhardt & Corinna Kausmann & Julia Simonson & Jürgen Schupp & Clemens Tesch-Römer, 2021. "Auswirkungen von Referenzzeiträumen auf die Selbstangaben zum freiwilligen Engagement: Ergebnisse einer experimentellen Studie," SOEPpapers on Multidisciplinary Panel Data Research 1125, DIW Berlin, The German Socio-Economic Panel (SOEP).
  • Handle: RePEc:diw:diwsop:diw_sp1125
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.816071.de/diw_sp1125.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Richter & Jürgen Schupp, 2015. "The SOEP Innovation Sample (SOEP IS)," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 135(3), pages 389-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jäger, Simon & Roth, Christopher & Roussille, Nina & Schoefer, Benjamin, 2021. "Worker Beliefs about Outside Options," IZA Discussion Papers 14963, Institute of Labor Economics (IZA).
    2. Fossen, Frank M. & Neyse, Levent & Johannesson, Magnus & Dreber Almenberg, Anna, 2020. "2D:4D and Self-Employment Using SOEP Data: A Replication Study," IZA Discussion Papers 13180, Institute of Labor Economics (IZA).
    3. Arni, Patrick & Dragone, Davide & Goette, Lorenz & Ziebarth, Nicolas R., 2021. "Biased health perceptions and risky health behaviors—Theory and evidence," Journal of Health Economics, Elsevier, vol. 76(C).
    4. Benjamin Scheibehenne & Jutta Mata & David Richter, 2018. "Accuracy of Food Preference Predictions in Couples," SOEPpapers on Multidisciplinary Panel Data Research 1003, DIW Berlin, The German Socio-Economic Panel (SOEP).
    5. Tobias Wolf & Maria Metzing & Richard E. Lucas, 2022. "Experienced Well-Being and Labor Market Status: The Role of Pleasure and Meaning," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(2), pages 691-721, September.
    6. Sabine Hommelhoff & David Richter & Cornelia Niessen & Denis Gerstorf & Jutta Heckhausen, 2019. "Being Unengaged at Work but Still Dedicating Time and Energy: A Longitudinal Study," SOEPpapers on Multidisciplinary Panel Data Research 1048, DIW Berlin, The German Socio-Economic Panel (SOEP).
    7. Pawlowski, Tim & Steckenleiter, Carina & Wallrafen, Tim & Lechner, Michael, 2021. "Individual labor market effects of local public expenditures on sports," Labour Economics, Elsevier, vol. 70(C).
    8. Deborah A. Cobb-Clark & Sarah C. Dahmann & Daniel A. Kamhöfer & Hannah Schildberg-Hörisch, 2021. "Sophistication about Self-Control," SOEPpapers on Multidisciplinary Panel Data Research 1144, DIW Berlin, The German Socio-Economic Panel (SOEP).
    9. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    10. Cobb-Clark, Deborah A. & Dahmann, Sarah C. & Kamhöfer, Daniel A. & Schildberg-Hörisch, Hannah, 2022. "The Determinants of Population Self-Control," IZA Discussion Papers 15175, Institute of Labor Economics (IZA).
    11. Roland Imhoff & Felix Zimmer & Olivier Klein & João H. C. António & Maria Babinska & Adrian Bangerter & Michal Bilewicz & Nebojša Blanuša & Kosta Bovan & Rumena Bužarovska & Aleksandra Cichocka & Sylv, 2022. "Conspiracy mentality and political orientation across 26 countries," Nature Human Behaviour, Nature, vol. 6(3), pages 392-403, March.
    12. Olga Stavrova & Dongning Ren, 2023. "Alone in a Crowd: Is Social Contact Associated with Less Psychological Pain of Loneliness in Everyday Life?," Journal of Happiness Studies, Springer, vol. 24(5), pages 1841-1860, June.
    13. Theresa Nutz & Anika Nelles & Philipp M. Lersch, 2022. "Who Opts Out? The Customisation of Marriage in the German Matrimonial Property Regime," European Journal of Population, Springer;European Association for Population Studies, vol. 38(3), pages 353-375, August.
    14. Dave Möwisch & Florian Schmiedek & David Richter & Annette Brose, 2019. "Capturing Affective Well-Being in Daily Life with the Day Reconstruction Method: A Refined View on Positive and Negative Affect," Journal of Happiness Studies, Springer, vol. 20(2), pages 641-663, February.
    15. Breunig, Christoph & Grabova, Iuliia & Haan, Peter & Weinhardt, Felix & Weizsäcker, Georg, 2021. "Long-run expectations of households," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 31, pages 1-1.
    16. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    17. Loessl, Victor von & Bühren, Christoph & Frank, Björn & Wetzel, Heike & Wiederhold, Elina, 2024. "Would you lie about your mother's birthday? A new online dishonesty experiment," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 109(C).
    18. Neyse, Levent & Johannesson, Magnus & Dreber, Anna, 2021. "2D:4D does not predict economic preferences: Evidence from a large, representative sample," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 390-401.
    19. Fossen, Frank M. & Neyse, Levent & Johannesson, Magnus & Dreber, Anna, 2022. "2D:4D and Self-Employment: A Preregistered Replication Study in a Large General Population Sample," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(1), pages 21-43.
    20. Cobb-Clark, Deborah A. & Dahmann, Sarah C. & Kamhöfer, Daniel A. & Schildberg-Hörisch, Hannah, 2022. "The Predictive Power of Self-Control for Life Outcomes," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 725-744.

    More about this item

    Keywords

    experimental study; time frames; survey questions; volunteering; SOEP-IS;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwsop:diw_sp1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/sodiwde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.