IDEAS home Printed from https://ideas.repec.org/p/ddf/wpaper/60.html
   My bibliography  Save this paper

Proaktives Kundenbindungsmanagement im Werbeartikelhandel: Entwicklung eines Machine-Learning-Modells zur Prognose von Kundenabwanderungen
[Proactive Customer Retention Management in Promotional Products Distribution: Implementation of a Machine Learning Model for Customer Churn Prediction]

Author

Listed:
  • Schemm, Jan

    (Department of Economics of the Duesseldorf University of Applied Sciences)

  • Schwarz, Christian

    (Department of Economics of the Duesseldorf University of Applied Sciences)

  • Stickrodt, Marc

    (WER GmbH)

Abstract

Die Arbeit entwickelt systematisch ein Machine-Learning-Modell zur Prognose von Kundenabwanderungen im Werbeartikelhandel. Im Fokus steht die WER GmbH, ein mittelständischer Werbeartikelhändler, der jährlich signifikante Umsatzverluste durch Kundenabwanderung in der Streckenabwicklung verzeichnet und diese durch effektive Bindungsmaßnahmen reduzieren möchte. Die Ausgangsbasis für ein proaktives Kundenbindungsmanagement bildet ein Modell zur Identifikation abwanderungsgefährdeter Kunden. Das in einem Vergleich von insgesamt 15 Verfahren ausgewählte heterogene Machine-Learning-Ensemble nutzt eine Vielzahl transaktions-, leistungs-, kunden- und interaktionsbezogener Merkmale und liefert signifikant bessere Abwanderungsprognosen als einfachere Vergleichsverfahren. Zusätzlich zur inhaltlichen Interpretation des Modells und der relevantesten Merkmale beschreibt die Arbeit die praktische Integration in den Geschäftsablauf des Unternehmens. Sie liefert damit eine empirische Fallstudie zur Entwicklung eines Abwanderungsprognosemodells in nicht-vertraglichen B2B-Kundenbeziehungen und demonstriert die Leistungsfähigkeit datengetriebener Verfahren des maschinellen Lernens in der praktischen Anwendung.

Suggested Citation

  • Schemm, Jan & Schwarz, Christian & Stickrodt, Marc, "undated". "Proaktives Kundenbindungsmanagement im Werbeartikelhandel: Entwicklung eines Machine-Learning-Modells zur Prognose von Kundenabwanderungen [Proactive Customer Retention Management in Promotional Pr," Duesseldorf Working Papers in Applied Management and Economics 60, Duesseldorf University of Applied Sciences.
  • Handle: RePEc:ddf:wpaper:60
    as

    Download full text from publisher

    File URL: https://nbn-resolving.org/urn:nbn:de:hbz:due62-opus-46335
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Mena & K. Coussement & K. de Bock & A. de Caigny & S. Lessmann, 2024. "Exploiting Time-Varying RFM Measures for Customer Churn Prediction with Deep Neural Networks," Post-Print hal-04680677, HAL.
    2. Gary Mena & Kristof Coussement & Koen W. Bock & Arno Caigny & Stefan Lessmann, 2024. "Exploiting time-varying RFM measures for customer churn prediction with deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 765-787, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Maschinelles Lernen; Kundenforschung; Kundenbeziehungsmanagement; Abwanderungsprognose; Machine Learning; Business-to-Business; Churn Prediction;
      All these keywords.

      JEL classification:

      • M39 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Other
      • G20 - Financial Economics - - Financial Institutions and Services - - - General

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ddf:wpaper:60. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefanie Soehnitz (email available below). General contact details of provider: .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.