IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/53901.html
   My bibliography  Save this paper

Separating Environmental Efficiency into Production and Abatement Efficiency – A Nonparametric Model with Application to U.S. Power Plants

Author

Listed:
  • Hampf, Benjamin

Abstract

In this paper we present a new approach to evaluate the environmental efficiency of decision making units. We propose a model that describes a two-stage process consisting of a production and an end-of-pipe abatement stage with the environmental efficiency being determined by the efficiency of both stages. Taking the dependencies between the two stages into account, we show how nonparametric methods can be used to measure environmental efficiency and to decompose it into production and abatement efficiency. For an empirical illustration we apply our model to an analysis of U.S. power plants.

Suggested Citation

  • Hampf, Benjamin, 2011. "Separating Environmental Efficiency into Production and Abatement Efficiency – A Nonparametric Model with Application to U.S. Power Plants," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 53901, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:53901
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/53901/
    as

    Download full text from publisher

    File URL: http://econstor.eu/bitstream/10419/84877/1/667307079.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    2. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    3. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    4. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    5. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    6. Zhongsheng Hua & Yiwen Bian, 2008. "Performance measurement for network DEA with undesirable factors," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 9(2), pages 141-153.
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hampf, Benjamin, 2011. "Separating environmental efficiency into production and abatement efficiency: A nonparametric model with application to U.S. power plants," Darmstadt Discussion Papers in Economics 204, Darmstadt University of Technology, Department of Law and Economics.
    2. Benjamin Hampf, 2014. "Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants," Journal of Productivity Analysis, Springer, vol. 41(3), pages 457-473, June.
    3. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    4. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    5. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    6. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    7. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    8. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    9. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    10. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.
    11. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    12. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    13. repec:zbw:inwedp:752021 is not listed on IDEAS
    14. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    15. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors," Energy Economics, Elsevier, vol. 42(C), pages 299-312.
    16. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    17. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    18. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    19. Hampf, Benjamin, 2015. "Estimating the materials balance condition: A stochastic frontier approach," Darmstadt Discussion Papers in Economics 226, Darmstadt University of Technology, Department of Law and Economics.
    20. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    21. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, vol. 4(9), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:53901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.