IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/958.html
   My bibliography  Save this paper

Least Concavity and the Distribution-Free Estimation of Non-Parametric Concave Functions

Author

Abstract

This paper studies the estimation of fully nonparametric models in which we can not identify the values of a symmetric function that we seek to estimate. I develop a method of consistently estimating a representative of a concave and monotone nonparametric systematic function. This representative possesses the same isovalue sets as the systematic function. The method proceeds by characterizing each set of observationally equivalent concave functions by a unique "least concave" representative. The least concave representative of the equivalence class to which the systematic function belongs is estimated by maximizing a criterion function over a compact set of least concave functions. I develop a computational technique to evaluate the values, at the observed points, and the gradients, at every point and up to a constant, of this least concave estimator. The paper includes a detailed description of how the method can be used to estimate three popular microeconometric models.

Suggested Citation

  • Rosa L. Matzkin, 1990. "Least Concavity and the Distribution-Free Estimation of Non-Parametric Concave Functions," Cowles Foundation Discussion Papers 958, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:958
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d09/d0958.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kannai, Yakar, 1977. "Concavifiability and constructions of concave utility functions," Journal of Mathematical Economics, Elsevier, vol. 4(1), pages 1-56, March.
    2. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    3. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susan Athey & Scott Stern, 1998. "An Empirical Framework for Testing Theories About Complimentarity in Organizational Design," NBER Working Papers 6600, National Bureau of Economic Research, Inc.
    2. Athey, Susan. & Stern, Scott, 1969-, 1998. "An empirical framework for testing theories about complementarity in orgaziational design," Working papers WP 4022-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Taber, Christopher R., 2000. "Semiparametric identification and heterogeneity in discrete choice dynamic programming models," Journal of Econometrics, Elsevier, vol. 96(2), pages 201-229, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    2. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    3. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    4. Mittelhammer, Ron C Dr. & Judge, George G., 2008. "A Minimum Power Divergence Class of CDFs and Estimators for Binary Choice Models," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7bc2828q, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    6. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    7. Amit Gandhi & Jeremy T. Fox, 2009. "Identifying Heterogeneity in Economic Choice and Selection Models Using Mixtures," 2009 Meeting Papers 165, Society for Economic Dynamics.
    8. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    9. Chen, Heng Z. & Randall, Alan, 1997. "Semi-nonparametric estimation of binary response models with an application to natural resource valuation," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 323-340.
    10. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    11. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    12. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    13. Edoardo Rainone, 2017. "Pairwise trading in the money market during the European sovereign debt crisis," Temi di discussione (Economic working papers) 1160, Bank of Italy, Economic Research and International Relations Area.
    14. Khan, Shakeeb, 2013. "Distribution free estimation of heteroskedastic binary response models using Probit/Logit criterion functions," Journal of Econometrics, Elsevier, vol. 172(1), pages 168-182.
    15. Rosa L. Matzkin, 1990. "Estimation of Multinomial Models Using Weak Monotonicity Assumptions," Cowles Foundation Discussion Papers 957, Cowles Foundation for Research in Economics, Yale University.
    16. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    17. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    18. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    19. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2015. "Parametric and Semiparametric IV Estimation of Network Models with Selectivity," EIEF Working Papers Series 1509, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    20. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.