IDEAS home Printed from https://ideas.repec.org/p/cui/wpaper/0056.html
   My bibliography  Save this paper

The Hidden Predictive Power of Cryptocurrencies: Evidence from US Stock Market

Author

Listed:
  • Kazeem Isah

    (Centre for Econometric and Allied Research, University of Ibadan)

  • Ibrahim D. Raheem

    (School of Economics, University of Kent, Canterbury, UK)

Abstract

This paper is motivated by the news that the surge in cryptocurrencies is an important candidate to in explaining the plummeting stock markets. To validate this believe, we construct a predictive model in which cryptocurrencies are identified as the predictors of US stock returns. The inherent statistical properties of cryptocurrencies such as persistence, endogeneity, and conditional heteroscedasticity are being accounted for in the Westerlund and Narayan (2015) estimator. Three salient results emanated from our estimations. First, we validated the importance of cryptocurrencies in predicting US stock prices; second, the cryptocurrencies predictive model outperforms the conventional time-series models such as Autoregressive Integrated Moving Average (ARIMA) model and the Autoregressive Fractionally Integrated Moving Average (ARFIMA); third, our results are robust to different method of forecast performance evaluation measures and different sub-sample periods. These results have important policy implications for the investors and policymakers.

Suggested Citation

  • Kazeem Isah & Ibrahim D. Raheem, 2018. "The Hidden Predictive Power of Cryptocurrencies: Evidence from US Stock Market," Working Papers 056, Centre for Econometric and Allied Research, University of Ibadan.
  • Handle: RePEc:cui:wpaper:0056
    as

    Download full text from publisher

    File URL: http://cear.org.ng/index.php?option=com_docman&task=doc_download&gid=99&Itemid=29
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    2. Stavros Degiannakis, 2008. "ARFIMAX and ARFIMAX-TARCH realized volatility modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
    3. Westerlund, Joakim & Narayan, Paresh Kumar, 2012. "Does the choice of estimator matter when forecasting returns?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2632-2640.
    4. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    5. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    6. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    7. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    8. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    9. Kurka, Josef, 2019. "Do cryptocurrencies and traditional asset classes influence each other?," Finance Research Letters, Elsevier, vol. 31(C), pages 38-46.
    10. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    11. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    12. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Saturday assorted links
      by Tyler Cowen in Marginal Revolution on 2018-05-26 15:54:18

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2019. "A sectoral analysis of asymmetric nexus between oil price and stock returns," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 241-259.
    2. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isah, Kazeem O. & Raheem, Ibrahim D., 2019. "The hidden predictive power of cryptocurrencies and QE: Evidence from US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    3. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Afees A. Salisu & Lateef O. Akanni & Rasheed O. Azeez, 2018. "Could this be a fiction? Bitcoin forecasts most tradable currency pairs better than ARFIMA," Working Papers 051, Centre for Econometric and Allied Research, University of Ibadan.
    5. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    6. Afees A. Salisu & Kazeem Isah & Lateef O. Akanni, 2018. "Predicting the stock prices of G7 countries with Bitcoin prices," Working Papers 054, Centre for Econometric and Allied Research, University of Ibadan.
    7. Salisu, Afees A. & Isah, Kazeem & Akanni, Lateef O., 2019. "Improving the predictability of stock returns with Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 857-867.
    8. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    9. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    10. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    11. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    12. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
    15. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    16. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    17. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    18. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    19. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    20. Seyram Pearl Kumah & Jones Odei Mensah, 2022. "Are cryptocurrencies connected to gold? A wavelet‐based quantile‐in‐quantile approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3640-3659, July.

    More about this item

    Keywords

    Stock Prices; Cryptocurrency; Digital Asset Prices; Predictive Model; Forecast Evaluation;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cui:wpaper:0056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adeoye Omosebi (email available below). General contact details of provider: https://edirc.repec.org/data/ceuibng.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.