IDEAS home Printed from https://ideas.repec.org/p/crd/wpaper/04005.html
   My bibliography  Save this paper

A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation

Author

Listed:
  • Hirukawa Masayuki

    (Department of Economics, Concordia University)

Abstract

The performance of a kernel HAC estimator depends on the accuracy of the estimation of the normalized curvature, an unknown quantity in the optimal bandwidth represented as the spectral density and its derivative. This paper proposes to estimate it with a general class of kernels. The AMSE of the kernel estimator and the AMSE-optimal bandwidth are derived. It is shown that the optimal bandwidth for the kernel estimator should grow at a much slower rate than the one for the HAC estimator with the same kernel. A solve-the-equation implementation method is also proposed. Finite sample performances are assessed through simulations.

Suggested Citation

  • Hirukawa Masayuki, 2004. "A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Working Papers 04005, Concordia University, Department of Economics.
  • Handle: RePEc:crd:wpaper:04005
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Zhijie Xiao & Oliver Linton, 2002. "A Nonparametric Prewhitened Covariance Estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(2), pages 215-250, March.
    3. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    4. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 423-425, October.
    5. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
    6. repec:wop:calsdi:96-17 is not listed on IDEAS
    7. Wouter Denhaan & Andrew T. Levin, 1996. "VARHAC Covariance Matrix Estimator (GAUSS)," QM&RBC Codes 64, Quantitative Macroeconomics & Real Business Cycles.
    8. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    9. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    10. Kocherlakota, Narayana R., 1990. "On tests of representative consumer asset pricing models," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 285-304, October.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    13. Jones, M. C. & Sheather, S. J., 1991. "Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 511-514, June.
    14. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    15. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    16. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 397-416, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    2. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    3. Ali Dib & Louis Phaneuf, 2005. "Intertemporal Substitution in Macroeconomics: Evidence from a Two-Dimensional Labour Supply Model with Money," Staff Working Papers 05-30, Bank of Canada.
    4. Scheufele, Rolf, 2010. "Evaluating the German (New Keynesian) Phillips curve," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 145-164, August.
    5. Craig Burnside & Martin Eichenbaum, 1994. "Small Sample Properties of Generalized Method of Moments Based Wald Tests," NBER Technical Working Papers 0155, National Bureau of Economic Research, Inc.
    6. repec:ebl:ecbull:v:3:y:2005:i:10:p:1-13 is not listed on IDEAS
    7. Giesen, Sebastian & Scheufele, Rolf, 2016. "Effects of incorrect specification on the finite sample properties of full and limited information estimators in DSGE models," Journal of Macroeconomics, Elsevier, vol. 48(C), pages 1-18.
    8. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    9. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    10. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    12. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    13. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    14. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    15. Pakoš, Michal, 2011. "Estimating Intertemporal and Intratemporal Substitutions When Both Income and Substitution Effects Are Present: The Role of Durable Goods," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 439-454.
    16. Michal Pakos, "undated". "Measuring Intratemporal and Intertemporal Substitutions When Both Income and Substitution Effects Are Present: The Role of Consumer Durables," GSIA Working Papers 2007-E29, Carnegie Mellon University, Tepper School of Business.
    17. Min-Hsien Chiang & Chihwa Kao, 2005. "Spectral Density Bandwidth Choice and Prewhitening in the Generalized Method of Moments Estimators for the Asset Pricing Model," Economics Bulletin, AccessEcon, vol. 3(10), pages 1-13.
    18. Gregory, Allan W. & Lamarche, Jean-Francois & Smith, Gregor W., 2002. "Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 213-233, March.
    19. Smith, David C., 1999. "Finite sample properties of tests of the Epstein-Zin asset pricing model," Journal of Econometrics, Elsevier, vol. 93(1), pages 113-148, November.
    20. Cogley, Timothy, 2001. "Estimating and testing rational expectations models when the trend specification is uncertain," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1485-1525, October.
    21. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    22. Ferson, Wayne E. & Constantinides, George M., 1991. "Habit persistence and durability in aggregate consumption: Empirical tests," Journal of Financial Economics, Elsevier, vol. 29(2), pages 199-240, October.

    More about this item

    Keywords

    Covariance matrix estimation; Kernel estimator; Bandwidth selection; Spectral density; Asymptotic mean squared error;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crd:wpaper:04005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economics Department (email available below). General contact details of provider: https://edirc.repec.org/data/deconca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.