IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v23y2002i2p215-250.html
   My bibliography  Save this article

A Nonparametric Prewhitened Covariance Estimator

Author

Listed:
  • ZHIJIE XIAO
  • OLIVER LINTON

Abstract

This paper proposes a new nonparametric spectral density estimator for time series models with general autocorrelation. The conventional nonparametric estimator that uses a positive kernel has mean squared error no better than n−4/5. We show that the best implementation of our estimator has mean squared error of order n−8/9, provided there is sufficient smoothness present in the spectral density. This is, of course, achieved by bias reduction; however, unlike most other bias reduction methods, like the kernel method with higher‐order kernels, our procedure ensures a positive definite estimate. Our method is a generalization of the well‐known prewhitening method of spectral estimation; we argue that this can best be interpreted as multiplicative bias reduction. Higher‐order expansions for the proposed estimator are derived, providing an improved bandwidth choice that minimizes the mean squared error to the second order. A simulation study shows that the recommended prewhitened kernel estimator reduces bias and mean squared error in spectral density estimation.

Suggested Citation

  • Zhijie Xiao & Oliver Linton, 2002. "A Nonparametric Prewhitened Covariance Estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(2), pages 215-250, March.
  • Handle: RePEc:bla:jtsera:v:23:y:2002:i:2:p:215-250
    DOI: 10.1111/1467-9892.00263
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00263
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    2. Linton, Oliver, 2005. "Nonparametric Inference For Unbalanced Time Series Data," Econometric Theory, Cambridge University Press, vol. 21(1), pages 143-157, February.
    3. Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
    4. Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Cambridge Working Papers in Economics 2218, Faculty of Economics, University of Cambridge.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Christopher Withers & Saralees Nadarajah, 2014. "Non-parametric confidence intervals for covariance and correlation," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 283-306, October.
    7. Hirukawa Masayuki, 2004. "A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Working Papers 04005, Concordia University, Department of Economics.
    8. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    9. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    11. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:23:y:2002:i:2:p:215-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.