IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/8716.html
   My bibliography  Save this paper

Sub-field normalization in the multiplicative case: High- and low-impact citation indicators

Author

Listed:
  • Ruiz-Castillo, Javier
  • Herranz, Neus

Abstract

This paper uses high- and low-impact citation indicators for the evaluation of the citation performance of research units at different aggregate levels. To solve the problem of the assignment of individual articles to multiple sub-fields, it follows a multiplicative strategy according to which each paper is wholly counted as many times as necessary in the several categories to which it is assigned at each aggregation level. To control for wide differences in citation practices at the lowest level of aggregation, we apply a novel sub-field normalization procedure in the multiplicative case. The methodology is applied to a partition of the world into three geographical areas: the U.S., the European Union (EU), and the Rest of the World. The main findings are the following two. (i) Although normalization does not systematically bias the results against any area at lower aggregate levels, it reduces the U.S./EU high-impact gap in the all-sciences case by a non-negligible 14.4%. (ii) The dominance of the U.S. over the EU in the basic and applied research published in the periodical literature is almost universal at all aggregation levels. From the high-impact perspective, for example, the U.S. is ahead of the EU in 77 out of 80 disciplines, and all of 20 fields. For all sciences as a whole, the U.S. high-impact indicator is 61% greater than that of the EU.

Suggested Citation

  • Ruiz-Castillo, Javier & Herranz, Neus, 2011. "Sub-field normalization in the multiplicative case: High- and low-impact citation indicators," CEPR Discussion Papers 8716, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:8716
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP8716
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    2. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    3. Albarrán, Pedro & Ortuño, Ignacio & Ruiz-Castillo, Javier, 2011. "The measurement of low- and high-impact in citation distributions: Technical results," Journal of Informetrics, Elsevier, vol. 5(1), pages 48-63.
    4. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albarrán, Pedro & Herrero, Carmen & Ruiz-Castillo, Javier & Villar, Antonio, 2017. "The Herrero-Villar approach to citation impact," Journal of Informetrics, Elsevier, vol. 11(2), pages 625-640.
    2. Ruiz-Castillo, Javier & Costas, Rodrigo, 2014. "The skewness of scientific productivity," Journal of Informetrics, Elsevier, vol. 8(4), pages 917-934.
    3. Herranz, Neus & Ruiz-Castillo, Javier, 2012. "Sub-field normalization in the multiplicative case: Average-based citation indicators," Journal of Informetrics, Elsevier, vol. 6(4), pages 543-556.
    4. Tol, Richard S.J., 2013. "Identifying excellent researchers: A new approach," Journal of Informetrics, Elsevier, vol. 7(4), pages 803-810.
    5. Waltman, Ludo & van Eck, Nees Jan, 2015. "Field-normalized citation impact indicators and the choice of an appropriate counting method," Journal of Informetrics, Elsevier, vol. 9(4), pages 872-894.
    6. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    7. Guillermo Armando Ronda-Pupo, 2020. "The performance of Latin American research on economics & business," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 573-590, January.
    8. Franceschini, Fiorenzo & Maisano, Domenico, 2014. "Sub-field normalization of the IEEE scientific journals based on their connection with Technical Societies," Journal of Informetrics, Elsevier, vol. 8(3), pages 508-533.
    9. Yunrong Li & Javier Ruiz-Castillo, 2014. "The impact of extreme observations in citation distributions," Research Evaluation, Oxford University Press, vol. 23(2), pages 174-182.
    10. Finardi, Ugo, 2013. "Correlation between Journal Impact Factor and Citation Performance: An experimental study," Journal of Informetrics, Elsevier, vol. 7(2), pages 357-370.
    11. Maximiano Ortiz-Pimentel & Carlos Molina & Guillermo Armando Ronda-Pupo, 2020. "Bibliometric assessment of papers on generations in management and business journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 445-469, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neus Herranz & Javier Ruiz-Castillo, 2012. "Multiplicative and fractional strategies when journals are assigned to several subfields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2195-2205, November.
    2. Neus Herranz & Javier Ruiz-Castillo, 2013. "The end of the “European Paradox”," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 453-464, April.
    3. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    4. Herranz, Neus & Ruiz-Castillo, Javier, 2012. "Sub-field normalization in the multiplicative case: Average-based citation indicators," Journal of Informetrics, Elsevier, vol. 6(4), pages 543-556.
    5. Bonaccorsi, Andrea & Haddawy, Peter & Cicero, Tindaro & Hassan, Saeed-Ul, 2017. "The solitude of stars. An analysis of the distributed excellence model of European universities," Journal of Informetrics, Elsevier, vol. 11(2), pages 435-454.
    6. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    7. Ruiz-Castillo, Javier & Costas, Rodrigo, 2018. "Individual and field citation distributions in 29 broad scientific fields," Journal of Informetrics, Elsevier, vol. 12(3), pages 868-892.
    8. Javier Ruiz-Castillo, 2012. "The evaluation of citation distributions," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(1), pages 291-310, March.
    9. Andrea Bonaccorsi & Tindaro Cicero & Peter Haddawy & Saeed-UL Hassan, 2017. "Explaining the transatlantic gap in research excellence," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 217-241, January.
    10. Antonio Perianes-Rodriguez & Javier Ruiz-Castillo, 2016. "University citation distributions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2790-2804, November.
    11. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    12. Albarrán, Pedro, 2012. "The measurement of scientific excellence around the world," UC3M Working papers. Economics we1208, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Juan A Crespo & Ignacio Ortuño-Ortín & Javier Ruiz-Castillo, 2012. "The Citation Merit of Scientific Publications," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    14. Javier Ruiz-Castillo, 2013. "The role of statistics in establishing the similarity of citation distributions in a static and a dynamic context," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 173-181, July.
    15. Giancarlo Ruocco & Cinzia Daraio, 2013. "An empirical approach to compare the performance of heterogeneous academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 601-625, December.
    16. Pedro Albarrán & Antonio Perianes-Rodríguez & Javier Ruiz-Castillo, 2015. "Differences in citation impact across countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(3), pages 512-525, March.
    17. Lundberg, Jonas, 2007. "Lifting the crown—citation z-score," Journal of Informetrics, Elsevier, vol. 1(2), pages 145-154.
    18. Marek Kwiek, 2018. "High research productivity in vertically undifferentiated higher education systems: Who are the top performers?," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 415-462, April.
    19. Li, Yunrong & Radicchi, Filippo & Castellano, Claudio & Ruiz-Castillo, Javier, 2013. "Quantitative evaluation of alternative field normalization procedures," Journal of Informetrics, Elsevier, vol. 7(3), pages 746-755.
    20. Pedro Albarrán & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "Average-based versus high- and low-impact indicators for the evaluation of scientific distributions," Research Evaluation, Oxford University Press, vol. 20(4), pages 325-339, October.

    More about this item

    Keywords

    Citation analysis; Web of science categories; Journal classification; Research performance; Subfield normalization; European paradox; High- and low-impact indicators;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • Y80 - Miscellaneous Categories - - Related Disciplines - - - Related Disciplines
    • Z00 - Other Special Topics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:8716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.