IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/17576.html
   My bibliography  Save this paper

Differentiable State-Space Models and Hamiltonian Monte Carlo Estimation

Author

Listed:
  • Childers, David
  • Fernández-Villaverde, Jesús
  • Perla, Jesse
  • Rackauckas, Chris
  • Wu, Peifan

Abstract

We propose a methodology to take dynamic stochastic general equilibrium (DSGE) models to the data based on the combination of differentiable state-space models and the Hamiltonian Monte Carlo (HMC) sampler. First, we introduce a method for implicit automatic differentiation of perturbation solutions of DSGE models with respect to the model's parameters. We can use the resulting output for various tasks requiring gradients, such as building an HMC sampler, to estimate first- and second-order approximations of DSGE models. The availability of derivatives also enables a general filter-free method to estimate nonlinear, non-Gaussian DSGE models by sampling the joint likelihood of parameters and latent states. We show that the gradient-based joint likelihood sampling approach is superior in efficiency and robustness to standard Metropolis-Hastings samplers by estimating a canonical real business cycle model, a real small open economy model, and a medium-scale New Keynesian DSGE model.

Suggested Citation

  • Childers, David & Fernández-Villaverde, Jesús & Perla, Jesse & Rackauckas, Chris & Wu, Peifan, 2022. "Differentiable State-Space Models and Hamiltonian Monte Carlo Estimation," CEPR Discussion Papers 17576, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:17576
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP17576
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
    2. Mahdi Ebrahimi Kahou & James Yu & Jesse Perla & Geoff Pleiss, 2024. "How Inductive Bias in Machine Learning Aligns with Optimality in Economic Dynamics," Papers 2406.01898, arXiv.org, revised Jun 2024.
    3. Böhl, Gregor, 2022. "Ensemble MCMC sampling for robust Bayesian inference," IMFS Working Paper Series 177, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:17576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.