IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/15459.html
   My bibliography  Save this paper

Optimally Imprecise Memory and Biased Forecasts

Author

Listed:
  • Woodford, Michael
  • Azeredo da Silveira, Rava
  • Sung, Yeji

Abstract

We propose a model of optimal decision making subject to a memory constraint. The constraint is a limit on the complexity of memory measured using Shannon's mutual information, as in models of rational inattention; but our theory differs from that of Sims (2003) in not assuming costless memory of past cognitive states. We show that the model implies that both forecasts and actions will exhibit idiosyncratic random variation; that average beliefs will also differ from rational-expectations beliefs, with a bias that fluctuates forever with a variance that does not fall to zero even in the long run; and that more recent news will be given disproportionate weight in forecasts. We solve the model under a variety of assumptions about the degree of persistence of the variable to be forecasted and the horizon over which it must be forecasted, and examine how the nature of forecast biases depends on these parameters. The model provides a simple explanation for a number of features of reported expectations in laboratory and field settings, notably the evidence of over-reaction in elicited forecasts documented by Afrouzi et al. (2020) and Bordalo et al. (2020a).

Suggested Citation

  • Woodford, Michael & Azeredo da Silveira, Rava & Sung, Yeji, 2020. "Optimally Imprecise Memory and Biased Forecasts," CEPR Discussion Papers 15459, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:15459
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP15459
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Khaw, Mel Win & Stevens, Luminita & Woodford, Michael, 2017. "Discrete adjustment to a changing environment: Experimental evidence," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 88-103.
    2. George William Evans, 2001. "Expectations in Macroeconomics Adaptive versus Eductive Learning," Revue économique, Presses de Sciences-Po, vol. 52(3), pages 573-582.
    3. Hassan Afrouzi & Spencer Yongwook Kwon & Augustin Landier & Yueran Ma & David Thesmar, 2020. "Overreaction and Working Memory," NBER Working Papers 27947, National Bureau of Economic Research, Inc.
    4. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    5. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
    6. Ulrike Malmendier & Stefan Nagel, 2016. "Learning from Inflation Experiences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(1), pages 53-87.
    7. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    8. Fuhrer, Jeff, 2017. "Expectations as a source of macroeconomic persistence: Evidence from survey expectations in a dynamic macro model," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 22-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantin Bürgi & Julio L. Ortiz, 2022. "Overreaction through Anchoring," CESifo Working Paper Series 10193, CESifo.
    2. Sebastian Link & Andreas Peichl & Christopher Roth & Johannes Wohlfart, 2023. "Attention to the Macroeconomy," ECONtribute Discussion Papers Series 256, University of Bonn and University of Cologne, Germany.
    3. José Daniel Aromí, 2021. "Large Current Account Deficits and Neglected Vulnerabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 69(4), pages 597-623, December.
    4. George-Marios Angeletos & Chen Lian, 2021. "Determinacy without the Taylor Principle," NBER Working Papers 28881, National Bureau of Economic Research, Inc.
    5. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    6. Xiao, Wei, 2022. "Understanding probabilistic expectations – a behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    7. Salle, Isabelle & Gorodnichenko, Yuriy & Coibion, Olivier, 2023. "Lifetime Memories of Inflation: Evidence from Surveys and the Lab," IZA Discussion Papers 16670, Institute of Labor Economics (IZA).
    8. Angelico, Cristina, 2024. "The green transition and firms' expectations on future prices: Survey evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 221(C), pages 519-543.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    2. Duffy, John & Shin, Michael, 2024. "Heterogeneous experience and constant-gain learning," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    3. Gáti, Laura, 2023. "Monetary policy & anchored expectations—An endogenous gain learning model," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 37-47.
    4. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    5. Andrade, Philippe & Gautier, Erwan & Mengus, Eric, 2023. "What matters in households’ inflation expectations?," Journal of Monetary Economics, Elsevier, vol. 138(C), pages 50-68.
    6. Martin Geiger & Johann Scharler, 2021. "How Do People Interpret Macroeconomic Shocks? Evidence from U.S. Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 813-843, June.
    7. Jean-Paul L’Huillier & Sanjay R Singh & Donghoon Yoo, 2024. "Incorporating Diagnostic Expectations into the New Keynesian Framework," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(5), pages 3013-3046.
    8. Stephen J. Cole, 2021. "Learning and the Effectiveness of Central Bank Forward Guidance," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 157-200, February.
    9. Stephen J. Cole, 2020. "The Limits of Central Bank forward Guidance under Learning," International Journal of Central Banking, International Journal of Central Banking, vol. 16(4), pages 199-250, September.
    10. Evans, David & Evans, George W. & McGough, Bruce, 2022. "The RPEs of RBCs and other DSGEs," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    11. Dave, Chetan & Malik, Samreen, 2017. "A tale of fat tails," European Economic Review, Elsevier, vol. 100(C), pages 293-317.
    12. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    13. Michele Berardi, 2020. "A probabilistic interpretation of the constant gain learning algorithm," Bulletin of Economic Research, Wiley Blackwell, vol. 72(4), pages 393-403, October.
    14. Hagenhoff, Tim & Lustenhouwer, Joep, 2020. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Working Papers 0686, University of Heidelberg, Department of Economics.
    15. Iliopulos, Eleni & Perego, Erica & Sopraseuth, Thepthida, 2021. "International business cycles: Information matters," Journal of Monetary Economics, Elsevier, vol. 123(C), pages 19-34.
    16. Greta Meggiorini & Fabio Milani, 2021. "Behavioral New Keynesian Models: Learning vs. Cognitive Discounting," CESifo Working Paper Series 9039, CESifo.
    17. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    18. Paul Grauwe, 2011. "Animal spirits and monetary policy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 423-457, June.
    19. Marine Charlotte André & Meixing Dai, 2015. "Central bank accountability under adaptive learning," Working Papers of BETA 2015-32, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    20. Ina Hajdini, 2022. "Mis-specified Forecasts and Myopia in an Estimated New Keynesian Model," Working Papers 22-03R, Federal Reserve Bank of Cleveland, revised 06 Mar 2023.

    More about this item

    Keywords

    Rational inattention; Over-reaction; Survey expectations;
    All these keywords.

    JEL classification:

    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E03 - Macroeconomics and Monetary Economics - - General - - - Behavioral Macroeconomics
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:15459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.