IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2846.html
   My bibliography  Save this paper

Regularized Newton methods for minimizing functions with Hölder continuous Hessians

Author

Listed:
  • Geovani N. GRAPIGLIA
  • Yurii NESTEROV

Abstract

No abstract is available for this item.

Suggested Citation

  • Geovani N. GRAPIGLIA & Yurii NESTEROV, 2017. "Regularized Newton methods for minimizing functions with Hölder continuous Hessians," LIDAM Reprints CORE 2846, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2846
    Note: In : SIAM Journal on Optimization, 27(1), 478-506, 2017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita Doikov & Yurii Nesterov, 2021. "Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 317-339, April.
    2. Doikov, Nikita & Nesterov, Yurii, 2021. "Optimization Methods for Fully Composite Problems," LIDAM Discussion Papers CORE 2021001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    4. Anton Rodomanov & Yurii Nesterov, 2020. "Smoothness Parameter of Power of Euclidean Norm," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 303-326, May.
    5. Nicholas I. M. Gould & Tyrone Rees & Jennifer A. Scott, 2019. "Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 1-35, May.
    6. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    7. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.