IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2002075.html
   My bibliography  Save this paper

Finitely additive beliefs and universal type spaces

Author

Listed:
  • MEIER, Martin

Abstract

In this paper we examine the existence of a universal (to be precise: terminal) type space when beliefs are described by finitely additive probability measures. We find that in the category of all type spaces that satisfy certain measurability conditions (-measurability, for some fixed regular cardinal ), there is a universal type space (i.e. a terminal object, that is a type space to which every type space can be mapped in a unique beliefs-preserving way (the morphisms of our category, the so-called type morphisms)), while, by an probabilistic adaption of the elegant sober-drunk example of Heifetz and Samet (1998a), we show that if all subsets of the spaces are required to be measurable there is no universal type space.

Suggested Citation

  • MEIER, Martin, 2002. "Finitely additive beliefs and universal type spaces," LIDAM Discussion Papers CORE 2002075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2002075
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2002.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedenberg, Amanda, 2010. "When do type structures contain all hierarchies of beliefs?," Games and Economic Behavior, Elsevier, vol. 68(1), pages 108-129, January.
    2. Miklós Pintér, 2005. "A game theoretic application of inverse limit," Game Theory and Information 0503006, University Library of Munich, Germany, revised 21 Oct 2005.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2002075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.